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Abstract 

Upon completion of a PLS-SEM analysis, one can obtain the model-implied indicator 

correlation matrix and compare it with the actual indicator correlation matrix. The latter is 

obtained directly from the data being analyzed. Indicator correlation fit indices are 

quantifications of the differences among these two matrices. Our focus in this paper is on the use 

of indicator correlation fit indices in PLS-SEM for selecting the analysis algorithm with the best 

fit. 
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Introduction 

    Structural equation modeling (SEM) is a method that allows researchers to build and analyze 

causal models with latent variables. Upon completion of an SEM analysis, one can obtain the 

model-implied indicator correlation matrix and compare it with the actual indicator correlation 

matrix. The latter is obtained directly from the data being analyzed. Indicator correlation fit 

indices are quantifications of the differences among these two matrices. 

    The use of indicator correlation fit indices, sometimes referred to as “global” fit indices, has a 

long history in SEM. They can be used for composite-based analyses building on classic partial 

least squares (PLS) algorithms, as well as more modern PLS-SEM algorithms that estimate latent 

variables as factors, leading to more precise estimates (Kock, 2019a; 2019b). WarpPLS is a 

leading PLS-SEM software tool that implements both types of algorithms (Kock, 2020a). We use 

WarpPLS version 7.0 in this paper. 

    A key assumption underlying the use of indicator correlation matrices is that they provide a 

rather detailed “signature” of a SEM model, when compared with other sets of parameters. In 

other words, the assumption is that an indicator correlation matrix is a set of parameters that 

carries a lot of information about any given model. Our focus in this paper is on the use of 

indicator correlation fit indices in PLS-SEM for selecting the analysis algorithm with the best fit. 

 

Illustrative model and data 

    Figure 1 shows the model used as a basis for our discussion. This model, also used in a 

previous study (Kock, 2020b), includes four latent variables: the degree to which members of 



Data Analysis Perspectives Journal, 1(4), 1-4, December 2020  

 

© ScriptWarp Systems, https://www.scriptwarp.com, page 2 

project teams use an e-collaboration technology (EC), the degree to which members of project 

teams use state-of-the-art project management techniques (PM); the business success of the 

projects conducted by the teams (SU); and the degree to which members of project teams are 

satisfied with their regular jobs (JS). 
 

Figure 1: Illustrative model used 

 

 
Notes: EC = e-collaboration technology use; PM = project management techniques use; SU = project success; JS = 

job satisfaction; notation under latent variable acronym describes measurement approach and number of indicators, 

e.g., (R)3i = reflective measurement with 3 indicators. 

 

 

    For the purposes of the present discussion, we created data employing the Monte Carlo 

simulation method (Kock, 2016). We used the model above as a basis. We also used prior 

research on project teams in various organizations; the teams were involved in the development 

of new products, such as a new toothpaste, a new car part, or a new pill to treat a disease. The 

illustrative dataset contained 300 cases, where each case refers to one project team. 

 

Indicator correlation fit indices used in PLS-SEM 

    After an analysis is conducted, the WarpPLS menu option “Explore additional coefficients and 

indices” allows a user to obtain an extended set of model fit and quality indices (see Figure 2). 

This extended set of model fit and quality indices displays the classic indices normally included 

in reports of SEM analyses employing this software, as well as new indices that allow 

investigators to assess the fit between the model-implied and empirical indicator correlation 

matrices. These new indices are the standardized root mean squared residual (SRMR), 

standardized mean absolute residual (SMAR), standardized chi-squared (SChS), standardized 

threshold difference count ratio (STDCR), and standardized threshold difference sum ratio 

(STDSR). 

    SRMR and SMAR. The SRMR index is calculated as the square root of the mean of the sum 

of the squared differences between the contents of non-redundant cells of the model-implied and 

empirical indicator correlation matrices. The SMAR index is calculated as the mean of the sum 

of the absolute differences between those matrices. The model-implied indicator correlation 

matrix is obtained based on the model parameters (e.g., weights and loadings) estimated by the 

software. The empirical indicator correlation matrix is simply the matrix containing the 

correlations among the indicators used in the model. The non-redundant cells of these matrices 
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are the upper or lower triangular cells, excluding the diagonal cells. Generally, SRMR and 

SMAR values lower than 0.1 indicate acceptable fit. 
 

Figure 2: Extended set of model fit and quality indices 

 

 
 

 

    SChS. The SChS index is calculated as the chi-squared coefficient obtained from a test of 

independence comparing the contents of non-redundant cells of the model-implied and empirical 

indicator correlation matrices. Here the contents of non-redundant cells of the model-implied 

indicator correlation matrix are treated as the observed values in a chi-squared test of 

independence, whereas the corresponding values in the empirical indicator correlation matrix are 

treated as the expected values. The number of degrees of freedom is calculated as the number of 

non-redundant cells minus 1, in line with what is usually done in traditional chi-squared tests of 

independence. For simplicity and consistency of application with respect to other model fit and 

quality indices, the P value associated with each SChS is calculated as the complement of the P 

value generated by the chi-squared test of independence (i.e., 1 minus that P value). Normally 

acceptable fit is indicated by a P value associated with a SChS that is equal to or lower than 0.05; 

that is, significant at the 0.05 level. This refers to the modified P value; the smaller it is, the 

better the fit. 

    STDCR and STDSR. The STDCR and STDSR indices are measures of the extent to which a 

model is free from instances in which the contents of non-redundant cells of the model-implied 

indicator correlation matrix differ significantly from the corresponding empirical indicator 

correlation matrix values. Here a heuristic threshold is used to establish whether two values 

differ significantly; this threshold is 0.2, twice the model-wide acceptable fit threshold for the 

SRMR and SMAR indices. The STDCR is calculated by dividing the number of non-redundant 

cells where significant differences do not exist by the total number of non-redundant cells. The 

STDSR index is calculated as the complement of the ratio obtained by dividing the sum of the 

absolute values of the differences between non-redundant cells where a significant difference 

exists by the total sum of the absolute values of the differences between non-redundant cells. 

These new STDCR and STDSR indices are calculated so that they can be used in ways 
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analogous to other classic fit indices generated by this software. Generally, values of the STDCR 

and STDSR equal to or greater than 0.7 indicate acceptable fit. 

 

Selecting the algorithm with the best fit 

    Let us say that we want to select the algorithm with the best fit among two algorithms: 

“Factor-Based PLS Type CFM3” and “PLS Regression”. The former, factor-based algorithm, 

yielded the following results for the indices, when used to analyze our illustrative model and 

data: SRMR=0.073, SMAR=0.061, SChS=2.390 (P<0.001), STDCR=0.985, and STDSR=0.946. 

The latter, composite-based algorithm, yielded the following results: SRMR=0.111, 

SMAR=0.091, SChS=0.423 (P<0.001), STDCR=0.894, and STDSR=0.750. 

    These results suggest that, of the two algorithms considered, the one with the best fit is the 

“Factor-Based PLS Type CFM3” algorithm. This is because this algorithm has the lowest SRMR 

and SMAR values; and the highest SChS, STDCR, and STDSR values. Moreover, the “Factor-

Based PLS Type CFM3” algorithm is the only one between the two with an SRMR value below 

the recommended threshold of 0.1. 

    Researchers may want to focus on a subset of the indicator correlation fit indices above to 

select among various algorithms, for the sake of simplicity. In this case it is recommended that 

they use the indices in the sequence above, one-by-one. That is, they should use the SRMR first, 

the SMAR second, and so on, with subsequent indices used as needed as “tiebreakers”. For this 

type of application, often only the SRMR and SMAR indices will be needed. 
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