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Abstract 

Path coefficients may be distorted, in the context of structural equation modeling via partial 

least squares (PLS-SEM), due to excess common structural variation shared in a model. This 

may be caused by methodological issues; e.g., the use of highly correlated but conceptually 

distinct latent variables, or common method bias. We discuss a common structural variation 

reduction procedure using WarpPLS, a leading PLS-SEM software tool. This procedure relies on 

the creation of analytic composites as replacements for latent variables, where the weights are 

one fourth of the original path coefficients among the latent variables and their predictors in the 

structural model, and with signs that are the opposites of the signs of the original path 

coefficients. 
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Introduction 

    The amount of common structural variation shared in a model, in the context of structural 

equation modeling via partial least squares (PLS-SEM), can be directly measured though the full 

collinearity variance inflation factors (FCVIFs) calculated for the latent variables (LVs) in the 

model (Kock, 2015; Kock & Lynn, 2012). The more common variation is shared among the LVs 

in the model, the higher are the FCVIFs. 

    Whenever the highest FCVIF in a model is above a predefined threshold (e.g., 3.3, 5 or 10), 

path coefficients may be distorted due to the excess common structural variation shared in the 

model. This may occur due to a number of reasons, such as the use in the model of highly 

correlated LVs that nevertheless measure different constructs, highly correlated indicators for 

different LVs, or significant common method bias (Kock, 2015; Kock & Lynn, 2012). 

    In these cases, PLS-SEM users may want to reduce the amount of common structural variation 

shared in their models. This can be done with WarpPLS, a leading software tool that implements 

classic composite-based and more modern factor-based PLS-SEM algorithms (Kock, 2019a; 

2019b), among other convenient features (Amora, 2021; Hubona & Belkhamza, 2021; Kock, 

2020b; 2020c; 2020d; 2021; Morrow & Conger, 2021; Moqbel et al., 2020). 

    We discuss a common structural variation reduction procedure in this article. This procedure 

relies on the creation of analytic composites as replacements for LVs. The weights used to create 

the analytic composites are one fourth of the original path coefficients among the LVs and their 
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predictors in the structural model (i.e., their predictor LVs), and with signs that are the opposites 

of the signs of the path coefficients. For simplicity, and without any impact on the generality of 

our discussion, all variables are assumed to be standardized. 

 

Common structural variation reduction: The one fourth rule 

    Let 𝑋 be an LV that is caused by two other LVs, 𝐴 and 𝐵, according to the equation below, 

where 𝜀𝑋 is the structural error term that accounts for the variance in 𝑋 that is not explained by 𝐴 

or 𝐵. This three-LV configuration provides the basis for a general discussion that applies to more 

complex models. 

    𝑋 =  𝛽𝑋𝐴𝐴 + 𝛽𝑋𝐵𝐵 + 𝜀𝑋. 

    This leads to 𝑋 sharing a certain amount of variation with 𝐴 and 𝐵, measured by the 

correlations 𝑟𝑋𝐴 and 𝑟𝑋𝐵. By performing the operation specified in the assignment equation 

below, where 𝑤𝑋𝐴 and 𝑤𝑋𝐵 are weights that are generally expected to be lower than  𝑟𝑋𝐴 and 𝑟𝑋𝐵, 

we create an analytic composite that aggregates 𝑋, 𝐴 and 𝐵. 

    𝐶 =  𝑆𝑡𝑑𝑧(𝑋 − 𝑤𝑋𝐴𝐴 − 𝑤𝑋𝐵𝐵). 

    In this assignment equation 𝑆𝑡𝑑𝑧(∙) is the standardization function. Here 𝐶 can be seen as 

version of 𝑋 in which the amount variation that comes from 𝐴 and 𝐵 is reduced. We call this 

operation common structural variation reduction because it reduces the amount of variation 

shared by the LVs that make up a structural model, which together with the measurement model 

(linking LVs and their indicators), form the basis for an SEM analysis. 

    This common variation reduction operation can be employed to produce variables 𝐶 and 𝑋 

that are correlated strongly enough to be seen as redundant, but that are not identical in that 𝐶 

incorporates less variation from 𝐴 and 𝐵. Two variables are redundant if the VIF calculated 

based on their scores alone is greater than 10, which is associated with a correlation of 0.950 or 

higher. 

    If the highest FCVIF in such a model is above a predefined threshold (e.g., 3.3, 5 or 10), what 

are good starting values for weights to generate a variable 𝐶 so that the highest FCVIF in such a 

model is reduced? Based on a number of simulations, as well as discussions with WarpPLS users 

based on their empirical studies, it appears that good starting values for the weights 𝑤𝑋𝐴 and 𝑤𝑋𝐵 

are one fourth of the corresponding path coefficients 𝛽𝑋𝐴 and 𝛽𝑋𝐵. 

 

Using analytic composites to reduce FCVIFs 

    The illustrative model shown in Figure 1 is used as a basis for our discussion. A similar model 

has been used elsewhere (see, e.g., Kock, 2015). As it can be seen, it contains three LVs. We 

created 300 rows of data employing the Monte Carlo simulation method (Kock, 2016). Also 

shown are the FCVIFs calculated for our model. These are measures of common variation 

among the LVs in the model. The highest FCVIF stands at 4.601. Let us assume that a researcher 

wants to reduce this highest FCVIF. 

    Since the FCVIFs shown refer to LVs, and not to indicators, the first step to reduce the highest 

FCVIF is to create a new model where the LVs are measured through their scores. To do this, we 

use the menu option “Add all latent variable (a.k.a. factor) scores as new standardized 

indicators” to add the LV scores to the dataset as new standardized indicators. In Figure 2, these 

indicators are named “lv_Tech”, “lv_Collab” and “lv_Advt”. After these indicators are added to 
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the dataset, we then use them to measure the LVs. The resulting model contains only single-

indicator LVs. 
 

Figure 1: Illustrative model used 

 

 
Notes: Collab = collaborative culture; Tech = e-collaboration technology use; Advt = competitive advantage; 

notation under latent variable acronym describes measurement approach and number of indicators, e.g., (R)6i = 

reflective measurement with 6 indicators. 

 

 

Figure 2: Using LV scores in a new model 

 

 
 

 

    The next step is to create an analytic composite that aggregates “lv_Tech”, “lv_Collab” and 

“lv_Advt” according to user-defined weights. The weights used for “lv_Tech” and “lv_Collab” 

are one fourth of the original path coefficients among these two LVs and “lv_Advt”, and with 

signs that are the opposites of the signs of the path coefficients. 
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    This is shown in Figure 3, where the weights used for “lv_Tech” and “lv_Collab” are -0.133 

and -0.110 respectively. These are calculated by dividing the original path coefficients of 0.530 

and 0.440 by 4 and multiplying them by -1. Since the analytic composite is expected to be used 

in place of “lv_Advt” in the model, the weight used for “lv_Advt” is positive 1. 
 

Figure 3: Creating and using analytic composite 

 

 
 

 

    For the analytic composite to be redundant with “lv_Advt”, which is desirable, the 

combination of weights used should be so that the correlation between the analytic composite 

and “lv_Advt” is in the 0.950 to 0.999 range. The former is the lowest correlation at which these 

two variables are redundant at the VIF > 10 level. Note that the correlation is 0.992 in our 

example. 

    Once the analytic composite is created, we use it in place of “lv_Advt” in the model, as the 

sole measure of “Advt”. Next, we conduct Step 5 again, obtaining new results. Among these new 

results are new FCVIFs, which are now lower than the FCVIFs in the original model. As we can 

see, the new FCVIFs for “Collab”, “Tech” and “Advt” are, respectively: 2.264, 2.487 and 3.024. 

These are lower than the original 2.655, 3.054 and 4.601. 

    Through this procedure we created an analytic composite whereby we removed variation in 

“Advt” that had come from “Collab” and “Tech”, with the goal of reducing the FCVIF of 4.601 

associated with “Advt”. Yet all FCVIFs went down in value. The reason for this is that each 

FCVIF is calculated taking all model LVs into consideration. 

 

Conclusion 

    Note that we removed variation in “Advt” from “Collab” and “Tech” in a way that is 

consistent with our model, and thus with the theory being tested through the model, since in the 
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model “Collab” and “Tech” are causes of “Advt”. When an LV causes another in a model, or is 

hypothesized to influence another, the underlying theory assumes that it in fact transfers 

variation to the LV it causes or influences. 

    Removing variation in a way that is consistent with the underlying theory is arguably 

preferable to doing it so otherwise, even though the final FCVIFs may go down in the same 

general way. For example, if we had removed variation in “Collab” using “Advt” and “Tech”, 

the FCVIFs would have gone down as well, but the final results would be different. If our 

procedure does not lead to FCVIF reductions, this could be an indication that the model is 

incorrectly specified. 

    Also note that the weights we used for “lv_Tech” and “lv_Collab” to create the analytic 

composite, namely -0.133 and -0.110, led to FCVIFs for “Collab”, “Tech” and “Advt” that could 

be seen as lower than desired. If we had used weights of lower absolute magnitude, we would 

have obtained greater FCVIFs. For example, we could have used, at first, weights that were one 

eighth of the original path coefficients, as opposed to one fourth. 

    Our common structural variation reduction procedure had a strong impact on FCVIFs, even 

though we aimed for correlations between the analytic composite and “lv_Advt” that were 

clearly indicative of redundancy. Given this, researchers using this technique may target 

correlations at the high end of the 0.950 – 0.999 range at first, by using weaker weights, and then 

progressively move toward 0.950, stopping when the highest FCVIF reaches a level that is seen 

as acceptable. 
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