Discriminant validity assessment in PLS-SEM: A comprehensive composite-based approach

S. Mostafa Rasoolimanesh

Taylor's University, Malaysia

Abstract

This paper aims to discuss modern approaches to assess discriminant validity in the context of structural equation modeling via partial least squares (PLS-SEM). It illustrates the application of these approaches using the WarpPLS 7.0 software. The Fornell-Larcker criterion, cross-loadings method, heterotrait-monotrait (HTMT) ratio, and full collinearity test have been discussed in this paper. A step-by-step guide is provided to assess discriminant validity using these four tests in WarpPLS 7.0. The first three criteria are applicable for reflective constructs, while the full collinearity test can be applied for both reflective and formative constructs. In different social science disciplines, a combination of reflective and formative constructs is a common practice, therefore reporting the full collinearity test for the assessment of discriminant validity can be an advantage.

Keywords: Discriminant Validity; Fornell-Larcker Criterion; Cross-Loading Method; Heterotrait-Monotrait (HTMT) Ratio, Full Collinearity Test; Reflective; Formative; WarpPLS.

Introduction

Partial least squares – structural equation modeling (PLS-SEM) enables composite-based SEM. It has witnessed growing attention by researchers in recent years and follows a two-step process including assessment of the measurement model and structural model (Ali et al., 2018; Kock, 2014).

Assessment of the measurement model entails the evaluation of validity and reliability of involved constructs in the model (Kock, 2014). This refers to evaluating of relationships between construct and the associated items; whereas the assessment of structural model focuses on the causal relationships between constructs (Ali et al., 2018; Amora, 2021; Kock, 2014).

To assess the measurement model, various criteria should be applied based on the nature of constructs. There are two types of measurement model known as reflective and formative, which formative can be causal and composite. For the reflective and formative measurement models, reliability and validity (i.e., convergent and discriminant validity) should be assessed.

However, the suggested criteria for assessment of reliability and validity of reflective and formative constructs are totally different. Reliability and convergent validity refer to the assessment of strong correlation of indicators to their corresponding construct and are deemed acceptable when indicators load strongly on their associated constructs (Amora, 2021). Discriminant validity refers to the distinction between constructs in the model.

Discriminant validity is established when the constructs are distinct from each other. In this short paper, different criteria to establish discriminant validity have been discussed using WarpPLS 7.0 software (Kock, 2020a). This software incorporates a number of advance features in addition to those discussed in this article (Amora, 2021; Hubona & Belkhamza, 2021; Moqbel et al., 2020; Kock, 2020b; 2020c; 2020d; 2021a; 2021b; Morrow & Conger, 2021).

Discriminant Validity

In order to establish discriminant validity, researchers are required to verify all the constructs in a model are distinct from each other (Kock, 2014; 2015; 2020b; Kock & Lynn, 2012). Lack of discriminant validity in a model leads to questionable conclusions, disputing whether results can truely be supported by the data or they are obtained because of using a construct twice in the model.

Previous studies suggested a few approaches to assess discriminant validity using PLS-SEM including the Fornell-Larcker criterion, cross-loadings, heterotrait-monotrait (HTMT) ratio, and full collinearity assessment (Fornell & Larcker, 1981; Henseler et al., 2015; Kock & Lynn, 2012; Rasoolimanesh et al., 2017). The three first approches can only be applied to the reflective constructs, not the models involving formative constructs, but the last approch (i.e., full collinearity) can be applied for both reflective and formative constructs (Rasoolimanesh et al., 2017).

To establish discriminant validity using Fornell-Larcker criterion the square root of AVE of each construct should be greaer than the correlation with any other construct in the framework (Fornell & Larcker, 1981), whereas to establish discriminant validity using cross-loadings method, the outer loading of each item on its associated construct should be greater than the loading of item on other constructs (Chin, 1998). There are two methods to assess discriminant validity using HTMT; comparing with threshold of either 0.85 or 0.9 (Henseler et al., 2015), and using inference statistic to test the hypothesis that HTMT=1 (Franke & Sarstedt, 2019). Using suggested thresholds, the value of HTMT should be lower than 0.85 or 0.9, whereas to apply inference statistic the hypothesis HTMT=1 should be rejected.

Fornell-Larcker criterion, cross-loading method, and the HTMT can only be applied to reflective constructs to establish discriminant validity. The full collinearity test to assess discriminant validity was suggested by Rasoolimanesh et al. (2017), which can be applied to both reflective and formative constructs.

The literature has proposed calculation of variance inflation factors (VIFs) as measures of collinearity for each construct and then compare these VIFs with a threshold of 10, 5, or the more conservative threshold of 3.3 (Kock, 2020; Kock & Lynn, 2012).

Empirical illustration

To illustrate different types of discriminant validity, this study has used the model and data from Rasoolimanesh et al. (2019). Figure 1 shows the model from Rasoolimanesh et al. (2019).

As discussed earlier, to establish discriminant validity, the literature recommended four criteria. WarpPLS 7.0 provides all four criteria for assessment of discriminant validity. After

creating model and performing SEM analysis in Step 5, we need to go to "Explore" option and select "Explore additional coefficients and indices" (See Figure 2).

Figure 1. Conceptual framework

Notes: CA=Community Attachment; EA=Environments Attitude; CAT=Cultural Attitude; EG=Economic Gain; INV=Involvement; RP=Residents' Perceptions.

Figure 2. Explore additional coefficients and indices

In "Explore additional coefficients and indices", we need to select "Discriminant validity coefficients (extended set)" (See Figure 3), and then we can get the results for assessment of discriminant validity using four criteria. WarpPLS 7.0 provides the results for Fornell- Larcker criterion, cross-loadings, heterotrait-monotrait (HTMT) ratio, and the full collinearity test.

Figure 3. Discriminant validity coefficients (extended set)

WarpPLS 7.0 - Explore additional coefficients and indices ave Close Help												- 1	
What to display?													
Discriminant validity coefficients (extended	ed set)	~											
Model fit and quality indices (extended se	et)	nat al	e not availal	ble elsewher	e in this sof	tware or that	t cannot be	seen toaethe	er in one sin	ale place: s	select what vo	u want to	
Reliabilities (extended set)	·					,				J, -	,,		
Discriminant validity coefficients (extended	ed set)												
Discriminant validity coefficients (extended set)													,
Outer model analysis algorithm: PLS Mode A													
Correlations among I.vs. with sq. rts. of AVEs													
	CA	EA	CAT	INV	EG	RP							
CA	0.708	0.187	0.188	-0.218	-0.036	0.201							
EA	0.187	0.755	0.328	-0.133	-0.051	0.408							
CAT	0.188	0.328	0.785	-0.104	0.141	0.229							
INV	-0.218	-0.133	-0.104	0.803	0.575	0.058							
EG	-0.036	-0.051	0.141	0.575	0.808	0.225							
RP	0.201	0.408	0.229	0.058	0.225	0.722							
Structure loadings and cross-loadings													
	CA	EA	CAT	INV	EG	RP							
CA1	0.687	0.168	0.172	-0.215	-0.095	0.111							
CA2	0.771	0.162	0.227	-0.100	0.067	0.164							
CA3	0.716	0.037	0.113	-0.092	-0.015	0.122							
CA4	0.651	0.150	0.025	-0.218	-0.080	0.158							
EA1	0.273	0.694	0.205	-0.116	-0.094	0.295							
EA2	0.057	0.794	0.225	-0.105	-0.022	0.325							
< <	0 103	0 779	0 313	0.080	0.003	0.304							>

Figure 4 shows the square root of AVE of all constructs greater than the correlation with other constructs, indicating the establishment of discriminant validity for this study.

i gui c - i itesuito di discriminante e unare e assessmente asing i dimeni isar enter ci teriori	Figure 4. Re	esults of discrin	ninant validity a	ssessment using l	Fornell-Larcker	criterion
--	--------------	-------------------	-------------------	-------------------	-----------------	-----------

WarpPLS 7.0 - Explore additional coefficients and indices												-	o x
Save Close Help													
What to display?													
Discriminant validity coefficients (exter	nded set)	~											
Notes: here you can view additional co	efficients and inc	lices that an	e not availa	hla alsawhai	o in this sof	tware or th	at cannot k	ne seen toge	ther in one	sinale place	select what	ou want to	
display.	ieniciento ana ina	ices that an	c not availa	Die elsewiiei	c III UII3 301	ware, or u	arcannori	e seen toge	uler in one c	single place	, select what	you want to	
Discriminant validity coefficients (extended set)													~

Outer model analysis algorithm: PLS Mode A													
				_									
Correlations among I.vs. with sq. rts. of AVEs													
	CA	ΕA	CAT	INIV	EG	DD							
CA	0.708	0.187	0.188	0.218	0.036	0.201							
EA	0.100	0.755	0.328	-0.210	-0.050	0.408							
CAT	0.188	0.328	0.785	-0 104	0.141	0.229							
INV	-0.218	-0 133	-0 104	0.803	0.575	0.058							
EG	-0.036	-0.051	0.141	0.575	0.808	0.225							
RP	0.201	0.408	0.229	0.058	0.225	0.722							
Structure loadings and cross-loadings													
	CA	EA	CAT	INV	EG	RP							
ī»¿CA1	0.687	0.168	0.172	-0.215	-0.095	0.111							
CA2	0.771	0.162	0.227	-0.100	0.067	0.164							
CA3	0.716	0.037	0.113	-0.092	-0.015	0.122							
CA4	0.651	0.150	0.025	-0.218	-0.080	0.158							
EA1	0.273	0.694	0.205	-0.116	-0.094	0.295							
EA2	0.057	0.794	0.225	-0.105	-0.022	0.325							
<pre>FA3 </pre>	0 103	0 772	0 313	0.080	0 003	0.304							>

Figure 5 shows the results of discriminant validity assessment using cross-loading, while Figure 6 shows the results using HTMT, and the value of HTMT ratio for all constructs are lower than 0.85. In addition, WarpPLS 7.0 provides the inferece statistic to test HTMT=1 hypothesis

Data Analysis Perspectives Journal, 3(2), 1-8, February 2022

using p value, which should be lower than 0.05, and confidence interval (CI), which 1 should not fall within lower and upper levels of CI. Figure 7 shows the results using inference statistic for HTMT, indicating the establishment of discriminant validity for the model.

					0								
WarpPLS 7.0 - Explore additional coefficients and in	dices											_	U
ave Close Help													
What to display?													
What to display?													
Discriminant validity coefficients	(extended set)	~											
Notes: here you can view additio display.	nal coefficients and ind	lices that ar	e not availal	ble elsewher	e in this sof	tware, or th	at cannot be s	een togethe	r in one sin	gle place; sei	lect what you	ı want to	
Structure loadings and cross-loadings							_						
	CA	EA	CAT	IND./	FC	DD							
CA1	0.687	0.168	0.172	-0.215	-0.095	0.111							
CA2	0.771	0.162	0.227	-0.100	0.067	0.164							
CA3	0.716	0.037	0.113	-0.092	-0.015	0.122							
CA4	0.651	0.150	0.025	-0.218	-0.080	0.158							
EA1	0.273	0.694	0.205	-0.116	-0.094	0.295							
EA2	0.057	0.794	0.225	-0.105	-0.022	0.325							
EA3	0.103	0.772	0.313	-0.080	-0.003	0.304							
CAT1	0.193	0.341	0.716	-0.149	0.021	0.151							
CAT2	0.125	0.197	0.750	-0.077	0.106	0.070							
CAT3	0.134	0.236	0.880	-0.045	0.174	0.240							
INV1	-0.238	-0.138	-0.098	0.923	0.513	0.063							
INV2	-0.226	-0.165	-0.108	0.862	0.545	0.024							
INV3	-0.123	-0.058	-0.069	0.857	0.497	0.051							
INV4	-0.132	-0.236	-0.167	0.503	0.215	0.004							
EG1	0.020	0.033	0.191	0.462	0.955	0.262							
EG2	-0.105	-0.196	0.023	0.555	0.788	0.097							
EG3	-0.183	-0.184	-0.055	0.682	0.653	0.041							
k_ECO-PP	0.258	0.380	0.265	-0.045	0.086	0.813							
k_SOC-PP	0.113	0.288	0.113	0.096	0.250	0.760							
Iv_ENV-PP	0.011	0.182	0.089	0.113	0.175	0.569							
<													>

Figure 5. Results of discriminant validity assessment using cross-loading method

Figure 6. Results of discriminant validity assessment using HTMT_{0.85}

WarpPLS 7.0 - Explore additional coefficients and indice	es										- 6	
ave Close Help												
What to display?												
Discriminant validity coefficients (e)	rtended set)	~										
Discriminant validity coefficients (c)												
Notes: here you can view additional display.	coefficients and ind	ices that are	e not availat	ole elsewhei	e in this sof	tware, or th	at cannot be seen	together in on	e single place	e; select what yo	ou want to	
HTMT ratios							_					
(anod if < 0.90, best if < 0.85)												
(good ii < 0.50, beat ii < 0.05)												
	CA	EA	CAT	INV	EG	RP						
CA												
EA	0.301											
CAT	0.278	0.482										
INV	0.296	0.256	0.172									
EG	0.204	0.243	0.148	0.781								
RP	0.309	0.676	0.296	0.155	0.282							
P values (one-tailed) for HTMT ratios												
(good if < 0.05)												
	CA	EA	CAT	INV	EG	RP						
CA												
EA	< 0.001											
CAT	< 0.001	<0.001										
INV	< 0.001	<0.001	<0.001									
EG	<0.001	< 0.001	<0.001	< 0.001								
RP	<0.001	< 0.001	<0.001	<0.001	< 0.001							
									_			>
•												

Figure 7.	Results of	discriminant	validity	assessment	using	HTMT	inference	statistic
riguit / .	Itcourto or	uistimmant	vanuity	assessment	using		mutute	statistic

Save Close Help What to display? Discriminant validity coefficients (extended set) Notes: here you can view additional coefficients and indices that are not available elsewhere in this software, or that cannot be seen together in one single place; select what y display.	you want to	
What to display? Discriminant validity coefficients (extended set) Notes: here you can view additional coefficients and indices that are not available elsewhere in this software, or that cannot be seen together in one single place; select what y display.	you want to	
Discriminant validity coefficients (extended set) Notes: here you can view additional coefficients and indices that are not available elsewhere in this software, or that cannot be seen together in one single place; select what y display.	you want to	
Notes: here you can view additional coefficients and indices that are not available elsewhere in this software, or that cannot be seen together in one single place; select what display.	you want to	
RP 0.309 0.676 0.296 0.155 0.282		^
O unitions (and tailed) for MTHT ration		
r values (one-tailed) to intrivi ratios (ond if < 0.05)		
CA EA CAT INV EG RP		
CA		
EA <0.001		
CAT <0.001 <0.001		
INV <0.001 <0.001		
EG <0.001 <0.001 <0.001		
RP <0.001 <0.001 <0.001 <0.001		
90 pct. com: Intervals for FLIWI ratios		
(gooa ir i is excludea)		
EA 0.205 0.397		
CAT 0.182 0.374 0.382 0.581		
INV 0.200 0.392 0.161 0.362 0.078 0.266		
EG 0.109 0.299 0.147 0.338 0.054 0.242 0.676 0.886		
RP 0.213 0.406 0.573 0.779 0.199 0.392 0.061 0.248 0.186 0.378		~

Finally, Figure 8 shows the results of discriminant validity assessment using the full collinearity test, which is the prefered approch for the current study, due to the formative nature of the residents' perceptions. The full collinearity VIFs for all constructs are lower than 3.3.

Figure 8. Results of discriminant validity assessment using the full collinearity test

WarpPLS 7.0 - Explore additional coefficients and in ave Close Help	ndices										- 0	
What to display?												
Discriminant validity coefficients	s (extended set)	~										
Notes: here you can view additio display.	onal coefficients and ind	lices that an	e not availal.	ble elsewher	e in this sol	tware, or that	cannot be seen tog	ether in one	single place	; select what you wa	ant to	
EG1	0.020	0.033	0.191	0.462	0.955	0.262						
:G2	-0.105	-0.196	0.023	0.555	0.788	0.097						
.G3	-0.183	-0.184	-0.055	0.682	0.653	0.041						
/_ECO-PP	0.258	0.380	0.265	-0.045	0.086	0.813						
_SOC-PP	0.113	0.288	0.113	0.096	0.250	0.760						
v_ENV-PP	0.011	0.182	0.089	0.113	0.175	0.569						
Full collinearity VIFs												
	CA	FΔ	CAT	INIV	EG	RP						
	1.126	1.347	1.216	1.647	1.682	1.329						
TMT												
11011 ratios												
1000 II < 0.00, Dest II < 0.00)												
	CA	FΔ	CAT	INIV	FG	DD						
۵	0A		or ti		20							
Δ	0 301											
AT	0.278	0.482										
IV	0.296	0.256	0 172									
6	0.204	0.243	0 148	0 781								
P	0.309	0.676	0.296	0.155	0.282							
	0.000	0.010	0.200	0.100	V.L.VL							

Conclusion

The current study briefly discusses four criteria, namely the: Fornell-Larcker criterion, crossloadings, heterotrait-monotrait (HTMT) ratio, and full collinearity assessment of discriminant validity in the PLS-SEM context, and application of these methods using WarpPLS 7.0.

The first three criteria are applicable for reflective constructs, while the full collinearity test can be applied for both reflective and formative constructs. In different social science disciplines, a combination of reflective and formative constructs is a common practice, therefore reporting the full collinearity test for the assessment of discriminant validity can be an advantage.

References

- Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., & Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. *International Journal of Contemporary Hospitality Management*, 30(1), 514-538.
- Amora, J. T. (2021). Convergent validity assessment in PLS-SEM: A loadings-driven approach. *Data Analysis Perspectives Journal*, 2(3), 1-6.
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, *18*(1), 39-50.
- Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: a comparison of four procedures. *Internet Research*, 3(1), 430-447.
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115-135.
- Hubona, G., & Belkhamza, Z. (2021). Testing a moderated mediation in PLS-SEM: A full latent growth approach. *Data Analysis Perspectives Journal*, 2(4), 1-5.
- Kock, N. (2014). Advanced mediating effects tests, multi-group analyses, and measurement model assessments in PLS-based SEM. *International Journal of e-Collaboration*, 10(3), 1–13.
- Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. *International Journal of e-Collaboration*, 11(4), 1-10.
- Kock, N. (2020a). WarpPLS User Manual: Version 7.0. Laredo, TX: ScriptWarp Systems.
- Kock, N. (2020b). Multilevel analyses in PLS-SEM: An anchor-factorial with variation diffusion approach. *Data Analysis Perspectives Journal*, 1(2), 1-6.
- Kock, N. (2020c). Full latent growth and its use in PLS-SEM: Testing moderating relationships. *Data Analysis Perspectives Journal*, 1(1), 1-5.
- Kock, N. (2020d). Using indicator correlation fit indices in PLS-SEM: Selecting the algorithm with the best fit. *Data Analysis Perspectives Journal*, 1(4), 1-4.
- Kock, N. (2021a). Common structural variation reduction in PLS-SEM: Replacement analytic composites and the one fourth rule. *Data Analysis Perspectives Journal*, 2(5), 1-6.
- Kock, N. (2021b). Harman's single factor test in PLS-SEM: Checking for common method bias. *Data Analysis Perspectives Journal*, 2(2), 1-6.
- Kock, N., & Lynn, G. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. *Journal of the Association for information Systems*, 13(7), 546-580.

- Moqbel, M., Guduru, R., & Harun, A. (2020). Testing mediation via indirect effects in PLS-SEM: A social networking site illustration. *Data Analysis Perspectives Journal*, 1(3), 1-6.
- Morrow, D. L., & Conger, S. (2021). Assessing reciprocal relationships in PLS-SEM: An illustration based on a job crafting study. Data Analysis Perspectives Journal, 2(1), 1-5.
- Rasoolimanesh, S. M., Nejati, M., Lei Mee, T., Ramayah, T., Shafaei, A., & Abd Razak, N. (2017). Full collinearity as a new criterion to assess discriminant validity of composite (formative) and reflective measurement models. In 9th International Conference on PLS and Related Methods (PLS'17) (pp. 17-19).
- Rasoolimanesh, S. M., Taheri, B., Gannon, M., Vafaei-Zadeh, A., & Hanifah, H. (2019). Does living in the vicinity of heritage tourism sites influence residents' perceptions and attitudes? *Journal of Sustainable Tourism*, 27(9), 1295-1317.