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Abstract 

We discuss a procedure that can be used to simultaneously test and control for endogeneity in 

models analyzed with structural equation modeling via partial least squares (PLS-SEM). It relies 

on the creation of stochastic instrumental variables for endogenous latent variables, and their 

use as control variables. The procedure can be seen as an implementation of the Durbin–Wu–

Hausman test, often referred to as the Hausman test, with stochastic instrumental variables. It 

can also be seen as a generalization of the two-stage least squares procedure. We illustrate the 

procedure with WarpPLS, a leading PLS-SEM tool. 
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Introduction 

    Endogeneity, in the context of structural equation modeling via partial least squares (PLS-

SEM), is a phenomenon whereby the structural error associated with an endogenous latent 

variable (LV) is correlated with one or more of the LVs pointing at the endogenous LV. If 

endogeneity exists with respect to an endogenous LV, the path coefficients estimated for the 

links pointing at the LV may be biased. 

    We discuss a procedure employing stochastic instrumental variables that is aimed at 

simultaneously testing and controlling for endogeneity. The procedure is illustrated with 

WarpPLS, a leading software tool that implements classic composite-based and more modern 

factor-based PLS-SEM algorithms (Kock, 2019a; 2019b), among other features that are useful in 

complex SEM analyses (Amora, 2021; Canatay et al., 2022; Hubona & Belkhamza, 2021; Kock, 

2015b; 2016; 2020a; 2020b; 2020c; 2020d; 2021a; 2021b; 2021c; 2022; Moqbel et al., 2020; 

Morrow & Conger, 2021; Rasoolimanesh, 2022). 

    The procedure discussed in this paper can be seen as an implementation employing stochastic 

instrumental variables of the Durbin–Wu–Hausman test, frequently referred to as simply the 

Hausman test. These are variables that differ from the instrumental variables normally used in 

econometrics and the classic Hausman test, in one key respect: they start as random uncorrelated 

variables that subsequently acquire variation from their instruments via the technique of variation 

sharing (Kock, 2019a). The instrumental variables used in econometrics and the classic Hausman 

test are in fact composites that aggregate instruments; as such, they tend to add massive 

collinearity to models if they are added to them. 
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Stochastic instrumental variables 

    The illustrative model shown in Figure 1 contains two exogenous LVs, namely DM and SJ; 

and three endogenous LVs, which are JS, OC and JP. Note that according to the model OC 

receives variation from DM only indirectly, via JS. Also, note that JP receives variation from 

DM and SJ only indirectly, via JS and OC. 
 

Figure 1: Illustrative model used 

 

 
Notes: DM = democratic management; SJ = scarcity of comparable jobs; JS = job satisfaction; OC = organizational 

commitment; JP = job performance; notation under latent variable acronym describes measurement approach and 

number of indicators, e.g., (R)3i = reflective measurement with 3 indicators. 

 

 

    If OC shares variation with DM that is not fully received via JS, the paths that point at OC 

may be distorted. This type of contamination can happen for various reasons, such as: the 

existence of hidden reciprocal relationships; common method bias; the confounding influence of 

omitted variables; data collection at multiple levels; and certain nonlinearity patterns (Kock, 

2015b; 2020c; 2021a; 2021b; 2021c; Kock & Lynn, 2012). 

    The same is true for JP. If JP shares variation patterns with DM and-or SJ that are not fully 

received via JS and OC, then the paths that point at JP may be distorted. These problems may 

occur if DM and-or SJ are in fact endogenous, in a “hidden” way, even though they are 

hypothesized through the model as being exogenous. 

    It is important to stress that it would be incorrect to add direct links among the exogenous 

variables DM and SJ in the model and the endogenous variables OC and JP. The reason this 

would be incorrect is that if these direct links do not exist in reality (i.e., at the population level), 

which is clearly suggested by the theory underlying the model (otherwise the direct links would 

be part of the model), then the inclusion of these direct links could lead to type I errors. 
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    The structural error terms associated with OC and JP can be seen as aggregating two types of 

variables: instrumental variables, which contain the extraneous variation; and uncorrelated error 

terms. In the case of OC, the instrumental variable in question is indicated as IVOC<DM and the 

corresponding uncorrelated error term is SEOC<R0. In the case of JP, the instrumental variable in 

question is IVJP<DM,SJ and the matching uncorrelated error term is SEJP<R0. Here the “R0” in the 

subscript is meant to indicate that the term is an uncorrelated residual. 

 

Creating instrumental variables 

    Instrumental variables associated with endogenous LVs can be created in WarpPLS through 

the menu sub-option “Explore analytic composites and instrumental variables”, under the main 

menu option “Explore” (see Figure 2). This sub-option becomes available after Step 5 is 

completed. Users should choose to create an “Instrumental variable” using the creation mode 

“Single stochastic variation sharing”. 
 

Figure 2: Creating instrumental variables 

 

 
 

 

    In our case, we need to create instrumental variables for JP and OC. The instrumental variable 

for OC will have as its instrument only DM, since this is the only LV that causes it indirectly. 

The instrumental variable for JP will have as its instruments DM and SJ. It should be noted that, 

for completeness, instruments should be all LVs that influence an endogenous LV indirectly, 
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even if the instruments themselves are endogenous LVs. This makes the use of instrumental 

variables, as proposed here, a generalization of the two-stage least squares procedure. 

 

Testing and controlling for endogeneity 

    Once instrumental variables are created, they should be added to the model, each pointing at 

the endogenous LV for which they were created (see Figure 3). If the path coefficient for the link 

between an instrumental variable and its endogenous LV is statistically significant, then that is 

an indication of endogeneity, which is nevertheless controlled for by the instrumental variable 

link. 
 

Figure 3: Testing and controlling for endogeneity 

 

 
 

 

    As we can see, the path coefficient for the link iOC > OC is statistically significant (β=0.26, 

P<0.01), which means that endogeneity seems to exist with respect to OC. This endogeneity is 

controlled for via iOC. On the other hand, the path coefficient for the link iJP > JP is not 

statistically significant (β=0.03, P=0.23), which means that endogeneity does not seem to exist 

with respect to JP.  

    Since the instrumental variables are control variables, for this type of test one should arguably 

use two-tailed P values (Kock, 2015a), which are twice the one-tailed values shown on graphs – 

e.g., P=0.46 for iJP > JP, which is twice the P=0.23 shown on the graph. The recommended 

threshold for statistical significance is still the generally used value of 0.05 (Kock, 2015a). That 

is, a two-tailed P value lower than 0.05 would suggest the presence of statistically significant 

endogeneity. 

    If we compare this model including iOC and iJP with the earlier model without these 

variables, we can see that the path coefficients for the links JS > OC and SJ > OC are noticeably 

different – particularly JS > OC. They are respectively 0.78 and 0.37 for the prior model, and 

0.66 and 0.36 for this model including iOC and iJP. The reason for the difference is the 

statistically significant endogeneity with respect to OC. 
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    On the other hand, the path coefficients for the links pointing at JP, namely JS > JP and OC > 

JP, are virtually the same for both models. They are respectively 0.39 and 0.45 for the prior 

model, and 0.39 and 0.46 for this model including iOC and iJP. This similarity is what one 

would expect, since the test suggested that there is no statistically significant endogeneity with 

respect to JP. 

 

Conclusion 

    As noted earlier, the stochastic instrumental variable procedure discussed here can be seen as 

an implementation of the Durbin–Wu–Hausman test, often referred to as simply the Hausman 

test, with stochastic instrumental variables. It can also be seen as a generalization of the two-

stage least squares procedure. One key difference is that the procedure discussed here allows one 

to simultaneously test and control for endogeneity. Instrumental variables associated with 

nonsignificant endogeneity can be either kept in or excluded from the model, as they do not 

affect the path coefficients for links going into their respective LVs. 

   Since the procedure relies on the creation of stochastic instrumental variables, and their 

inclusion in the model, it will usually increase full collinearity variance inflation factors 

(FCVIFs). Stochastic instrumental variables start as random uncorrelated variables that then 

acquire variation from their instruments via the technique of variation sharing (Kock, 2019a). As 

such, they do not increase FCVIFs as much as would instrumental variables traditionally used in 

econometrics for the classic Hausman test. The latter are in fact composites that aggregate 

instruments. 

    Nevertheless, it is recommended that FCVIFs be estimated prior to the implementation of the 

procedure and reported as the actual model FCVIFs for various tests – e.g., the widely used 

common method bias test using FCVIFs (Kock, 2015b). This can easily be done by saving the 

WarpPLS project file prior to the procedure, and creating a new project file to store the results 

after the procedure. If users decide to use the FCVIFs obtained after the implementation of the 

procedure, with the model including the new stochastic instrumental variables, and the FCVIFs 

indicate that the model passes various tests, those users should interpret the results as more 

conservative than they would normally be. 
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