Testing and controlling for endogeneity in PLS-SEM with
stochastic instrumental variables

Ned Kock
Texas A&M International University, USA

Abstract

We discuss a procedure that can be used to simultaneously test and control for endogeneity in
models analyzed with structural equation modeling via partial least squares (PLS-SEM). It relies
on the creation of stochastic instrumental variables for endogenous latent variables, and their
use as control variables. The procedure can be seen as an implementation of the Durbin—-Wu—
Hausman test, often referred to as the Hausman test, with stochastic instrumental variables. It
can also be seen as a generalization of the two-stage least squares procedure. We illustrate the
procedure with WarpPLS, a leading PLS-SEM tool.
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Introduction

Endogeneity, in the context of structural equation modeling via partial least squares (PLS-
SEM), is a phenomenon whereby the structural error associated with an endogenous latent
variable (LV) is correlated with one or more of the LVs pointing at the endogenous LV. If
endogeneity exists with respect to an endogenous LV, the path coefficients estimated for the
links pointing at the LV may be biased.

We discuss a procedure employing stochastic instrumental variables that is aimed at
simultaneously testing and controlling for endogeneity. The procedure is illustrated with
WarpPLS, a leading software tool that implements classic composite-based and more modern
factor-based PLS-SEM algorithms (Kock, 2019a; 2019b), among other features that are useful in
complex SEM analyses (Amora, 2021; Canatay et al., 2022; Hubona & Belkhamza, 2021; Kock,
2015b; 2016; 2020a; 2020b; 2020c; 2020d; 2021a; 2021b; 2021c; 2022; Mogbel et al., 2020;
Morrow & Conger, 2021; Rasoolimanesh, 2022).

The procedure discussed in this paper can be seen as an implementation employing stochastic
instrumental variables of the Durbin—~Wu—Hausman test, frequently referred to as simply the
Hausman test. These are variables that differ from the instrumental variables normally used in
econometrics and the classic Hausman test, in one key respect: they start as random uncorrelated
variables that subsequently acquire variation from their instruments via the technique of variation
sharing (Kock, 2019a). The instrumental variables used in econometrics and the classic Hausman
test are in fact composites that aggregate instruments; as such, they tend to add massive
collinearity to models if they are added to them.

© ScriptWarp Systems, https://www.scriptwarp.com, page 1



Stochastic instrumental variables

The illustrative model shown in Figure 1 contains two exogenous LVs, namely DM and SJ;
and three endogenous LVs, which are JS, OC and JP. Note that according to the model OC
receives variation from DM only indirectly, via JS. Also, note that JP receives variation from
DM and SJ only indirectly, via JS and OC.

Figure 1: lllustrative model used
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Notes: DM = democratic management; SJ = scarcity of comparable jobs; JS = job satisfaction; OC = organizational
commitment; JP = job performance; notation under latent variable acronym describes measurement approach and
number of indicators, e.g., (R)3i = reflective measurement with 3 indicators.

If OC shares variation with DM that is not fully received via JS, the paths that point at OC
may be distorted. This type of contamination can happen for various reasons, such as: the
existence of hidden reciprocal relationships; common method bias; the confounding influence of
omitted variables; data collection at multiple levels; and certain nonlinearity patterns (Kock,
2015b; 2020c; 2021a; 2021b; 2021c; Kock & Lynn, 2012).

The same is true for JP. If JP shares variation patterns with DM and-or SJ that are not fully
received via JS and OC, then the paths that point at JP may be distorted. These problems may
occur if DM and-or SJ are in fact endogenous, in a “hidden” way, even though they are
hypothesized through the model as being exogenous.

It is important to stress that it would be incorrect to add direct links among the exogenous
variables DM and SJ in the model and the endogenous variables OC and JP. The reason this
would be incorrect is that if these direct links do not exist in reality (i.e., at the population level),
which is clearly suggested by the theory underlying the model (otherwise the direct links would
be part of the model), then the inclusion of these direct links could lead to type I errors.
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The structural error terms associated with OC and JP can be seen as aggregating two types of
variables: instrumental variables, which contain the extraneous variation; and uncorrelated error
terms. In the case of OC, the instrumental variable in question is indicated as IVoc<pm and the
corresponding uncorrelated error term is SEoc<ro. In the case of JP, the instrumental variable in
question is 1Vp<pm,sy and the matching uncorrelated error term is SEjp<ro. Here the “R0” in the
subscript is meant to indicate that the term is an uncorrelated residual.

Creating instrumental variables

Instrumental variables associated with endogenous LVs can be created in WarpPLS through
the menu sub-option “Explore analytic composites and instrumental variables”, under the main
menu option “Explore” (see Figure 2). This sub-option becomes available after Step 5 is
completed. Users should choose to create an “Instrumental variable” using the creation mode
“Single stochastic variation sharing”.

Figure 2: Creating instrumental variables
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In our case, we need to create instrumental variables for JP and OC. The instrumental variable
for OC will have as its instrument only DM, since this is the only LV that causes it indirectly.
The instrumental variable for JP will have as its instruments DM and SJ. It should be noted that,
for completeness, instruments should be all LVs that influence an endogenous LV indirectly,
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even if the instruments themselves are endogenous LVs. This makes the use of instrumental
variables, as proposed here, a generalization of the two-stage least squares procedure.

Testing and controlling for endogeneity

Once instrumental variables are created, they should be added to the model, each pointing at
the endogenous LV for which they were created (see Figure 3). If the path coefficient for the link
between an instrumental variable and its endogenous LV is statistically significant, then that is
an indication of endogeneity, which is nevertheless controlled for by the instrumental variable
link.

Figure 3: Testing and controlling for endogeneity
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As we can see, the path coefficient for the link iOC > OC is statistically significant (f=0.26,
P<0.01), which means that endogeneity seems to exist with respect to OC. This endogeneity is
controlled for via iOC. On the other hand, the path coefficient for the link iJP > JP is not
statistically significant (3=0.03, P=0.23), which means that endogeneity does not seem to exist
with respect to JP.

Since the instrumental variables are control variables, for this type of test one should arguably
use two-tailed P values (Kock, 2015a), which are twice the one-tailed values shown on graphs —
e.g., P=0.46 for iJP > JP, which is twice the P=0.23 shown on the graph. The recommended
threshold for statistical significance is still the generally used value of 0.05 (Kock, 2015a). That
is, a two-tailed P value lower than 0.05 would suggest the presence of statistically significant
endogeneity.

If we compare this model including iOC and iJP with the earlier model without these
variables, we can see that the path coefficients for the links JS > OC and SJ > OC are noticeably
different — particularly JS > OC. They are respectively 0.78 and 0.37 for the prior model, and
0.66 and 0.36 for this model including iOC and iJP. The reason for the difference is the
statistically significant endogeneity with respect to OC.
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On the other hand, the path coefficients for the links pointing at JP, namely JS > JP and OC >
JP, are virtually the same for both models. They are respectively 0.39 and 0.45 for the prior
model, and 0.39 and 0.46 for this model including iOC and iJP. This similarity is what one
would expect, since the test suggested that there is no statistically significant endogeneity with
respect to JP.

Conclusion

As noted earlier, the stochastic instrumental variable procedure discussed here can be seen as
an implementation of the Durbin—Wu—Hausman test, often referred to as simply the Hausman
test, with stochastic instrumental variables. It can also be seen as a generalization of the two-
stage least squares procedure. One key difference is that the procedure discussed here allows one
to simultaneously test and control for endogeneity. Instrumental variables associated with
nonsignificant endogeneity can be either kept in or excluded from the model, as they do not
affect the path coefficients for links going into their respective LVs.

Since the procedure relies on the creation of stochastic instrumental variables, and their
inclusion in the model, it will usually increase full collinearity variance inflation factors
(FCVIFs). Stochastic instrumental variables start as random uncorrelated variables that then
acquire variation from their instruments via the technique of variation sharing (Kock, 2019a). As
such, they do not increase FCVIFs as much as would instrumental variables traditionally used in
econometrics for the classic Hausman test. The latter are in fact composites that aggregate
instruments.

Nevertheless, it is recommended that FCVIFs be estimated prior to the implementation of the
procedure and reported as the actual model FCVIFs for various tests — e.g., the widely used
common method bias test using FCVIFs (Kock, 2015b). This can easily be done by saving the
WarpPLS project file prior to the procedure, and creating a new project file to store the results
after the procedure. If users decide to use the FCVIFs obtained after the implementation of the
procedure, with the model including the new stochastic instrumental variables, and the FCVIFs
indicate that the model passes various tests, those users should interpret the results as more
conservative than they would normally be.
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