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Abstract

Estimating the minimum required sample size is an essential issue for studies that use structural
equation modeling employing partial least squares (PLS-SEM). Several PLS-SEM-based studies
ignore this critical step or use simple techniques, which lead to inaccurate sample size
estimations. This paper illustrates two effective heuristic methods to estimate the minimum
required sample size using WarpPLS, a leading PLS-SEM software tool.
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Introduction

This study focuses on the minimum sample size estimation in the context of partial least
squares-based structural equation modeling (PLS-SEM). Estimating the minimum sample size
requirement is essential to preserve the statistical power of a PLS-SEM test (Kock & Hadaya,
2018). Using the correct sample size helps to improve the statistical generalizability of the results
(Lee & Baskerville, 2003). Therefore, Kock & Hadaya (2018) define minimum sample size
estimation as one of the fundamental issues of PLS-SEM. Despite its importance, few PLS-
SEM-based studies pay attention to the adequacy of the sample size required to achieve the
desired statistical power of the PLS-SEM test. In this paper, we present two heuristic methods to
estimate the minimum sample size requirement in both composite and factor-based PLS-SEM
study: i) the inverse square root method and ii) the gamma-exponential method. These two
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methods are available as features in WarpPLS - a popular PLS-SEM software (Kock, 20203,
2020b) that implements a number of advanced data analysis features (Amora, 2021; Canatay et
al., 2022; Hubona & Belkhamza, 2021; Kock, 2020c; 2021a; 2021b; 2022; Moqbel et al., 2020;
Morrow & Conger, 2021; Rasoolimanesh, 2022).

Why is minimum sample size estimation important?

Determining the correct sample size is essential for the reliability of the sampling procedure
since an increase in sample size leads to "greater generalizability of the sample points to a
sample estimate because of the greater convergence expected from, the larger sample size" (Lee
& Baskerville, 2003). Although PLS-SEM is perceived to be an effective method to analyze
complex models using smaller sizes, the results may suffer due to inadequate sample size like
any other statistical method. Hence, researchers must exert the proper effort to achieve
acceptable levels of statistical power in their research settings. While the "10-times rule method"
and the "minimum R-squared method" are easy to use methods, they are shown to be not
accurate in estimating the minimum required sample size (Kock & Hadaya, 2018). Alternatively,
two heuristic methods, i) the inverse square root method and ii) the gamma-exponential method,
produce fairly accurate estimations (Kock & Hadaya, 2018). These two methods are presented in
the following sections of this paper. Both methods can be executed fairly easily using the
WarpPLS software.

Illustrative model and data

The model in Figure 1 is used as a basis in this study. Data for this study was 300 cases
obtained from the WarpPLS database (see resources at warppls.com). This model has four latent
variables—the degree to which members of project teams use an e-collaboration technology
(ECollab), the degree to which they use state-of-the-art project management techniques
(Promgt), the business success of the project operated by the team members (Success), and the
degree to which the team members are satisfied with their regular jobs (JSat).

Figure 1: Hlustrative model used
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Note: (R)3i = reflective measurement with 3 indicators.
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Minimum sample size estimation for composite-based models

Composite-based SEM algorithms generate a higher minimum required sample size because
they tend to underestimate real path coefficients and overestimate path coefficient effects that do
not exist (Kock, 2019). Composite-based SEM aggregates indicators but does not fully
incorporate measurement error, which is why the classic PLS method yields biased estimates of
different parameters, "even as sample sizes grow to infinity" (Kock, 2019).

Figure 2: Minimum sample size estimation
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Upon executing the composite-based model (Step 5), go to the main software window and
choose the option "Explore™ (Figure 2). This option allows users to estimate the minimum
sample size using minimum absolute path coefficient, power level, and significance level.

Figure 3: lllustrative model of composite-based method
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As shown in Figure 3, the minimum absolute significant path coefficient is 0.32. Based on
this, we used significance level (0.05) and power level (0.99) to estimate the minimum required
sample size using both the inverse square root method and the gamma-exponential method.
Figure 4 shows the inverse square root method generated a larger minimum required sample size
(155) than the gamma-exponential method (133). In this case, the preferred minimum sample
size is 155. Note that this power level is quite high; usually the value of 0.80 is acceptable.

Figure 4: Sample size estimation when power is 0.99
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Minimum sample size estimation for factor-based models

The factor-based method, broadly defined, possesses unique characteristics extensively used in
structural equation modeling (SEM) to estimate factors and accounts fully for the measurement
error (Kock, 2019). Therefore, this method generates unbiased sample size parameters, a
significant advantage over the composite-based method (Kock, 2019). This method has equal
statistical consistency with covariance-based SEM but greater statistical efficiency (Kock, 2019).

Figure 5 shows settings to estimate models using factor-based SEM. The WarpPLS "view or
change general settings"” enables the outer model analysis algorithm to be changed from the
composite-based method "PLS Regression" to "Factor-Based PLS Type REG2" for factor-based
SEM estimation. This is one of the several factor-based algorithms available from the software.

Figure 6 shows the illustrative model that is used as a basis for our factor-based analysis.
Based on the minimum path coefficient (0.46), significance level (0.05), and power level (0.99),
we estimated the minimum required sample size based on the inverse square root and gamma-
exponential methods. The inverse square root method yields a larger minimum required sample
size (75) than the gamma-exponential method (53); see Figure 7. In this case, 75 is the preferred
minimum sample size for data collection and analysis. Our sample size (300) is larger than the
estimated required minimum sample size for both composite and factor-based analysis.

Note that Figure 6 shows that ECollab has a moderating effect on the link of Promgt >
Success. This indicates that the interaction variable ECollab*Promgt is a predictor of Success, in
addition to the direct predictors ECollab and Promgt.
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Figure 5: Settings for factor-based SEM
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Figure 6: Illustrative model of factor-based method

Figure 7: Sample size estimation when power is 0.990
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The results shows that the coefficient (0.39) for the moderating effect is lower than the
coefficients (0.53 and 0.46) for other direct effects. We did not use 0.39 as the minimum absolute
path coefficient to estimate the minimum sample size in this study because the argument of using
a moderating effect as the minimum absolute path coefficient to estimate the minimum sample
size is still being debated, since moderating effects frequently give rise to nonlinear effects that
are significantly stronger than the underlying moderating effects themselves (Kock, 2021c).
Further, the model's control variable is not used for minimum sample estimation since it is not
hypothesized for our study.

Conclusion

In this study, we demonstrated a minimum sample size estimation analysis in the context of
PLS-SEM. Our presentation shows that the minimum required sample size is estimated to be
greater with a composite-based SEM algorithm when compared with a factor-based SEM
algorithm. The inverse square root method is preferred in both composite and factor-based
methods since it produces a more conservative estimate (i.e., a larger minimum required sample
size) than the gamma-exponential method.
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