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Abstract 

Two latent variables may influence each other in both directions, in what characterizes a 

reciprocal relationship. This paper discusses how one can assess multiple reciprocal 

relationships in the context of structural equation modeling via partial least squares (PLS-SEM). 

We discuss the assessment of multiple reciprocal relationships, through an illustrative model 

analyzed with the software WarpPLS. 
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Introduction 

    Two latent variables (LVs) may influence each other in both directions, in what characterizes 

a reciprocal relationship. This paper discusses how one can assess multiple reciprocal 

relationships in the context of structural equation modeling via partial least squares (PLS-SEM). 

It is a follow-up on an article by Morrow & Conger (2021), which describes the process used in 

determining the presence of reciprocal relationships between the two job crafting constructs. 

    We discuss the assessment of multiple reciprocal relationships, through an illustrative model 

analyzed with the software WarpPLS, Version 8.0 (Kock, 2022a). This software is a widely used 

SEM tool that implements both classic composite-based as well as more modern factor-based 

PLS-SEM algorithms (Kock, 2019a; 2019b), among other features that can be useful in advanced 

SEM analyses (Amora, 2021; 2023; Canatay et al., 2022; Hubona & Belkhamza, 2021; Kock, 

2015a; 2015b; 2015c; 2016; 2020a; 2020b; 2020c; 2021a; 2021b; 2021c; 2022a; 2022b; Kock & 

Gaskins, 2016; Kock & Lynn, 2012; Ma & Zhang, 2023; Moqbel et al., 2020; Morrow & 

Conger, 2021; Rasoolimanesh, 2022). 

 

Illustrative model and data 

    The illustrative model shown in Figure 1 contains two direct links that are to be tested for 

reciprocity. The model contains two exogenous LVs, namely DM and SJ; and three endogenous 

LVs, which are JS, OC and JP. The results shown are based on a simulated dataset, created 

through the Monte Carlo method (Kock, 2016). The simulated dataset has a size of 500, and was 

created based on the illustrative model. It was created in such a way as to have only one true 

reciprocal relationship; the JS <> OC relationship, but not the OC <> JP relationship. The latter 

is a true direct relationship OC > JP. 
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    The outer model analysis algorithm used to generate the results in the illustrative model was 

“Factor-Based PLS Type CFM3”. Like covariance-based SEM algorithms, this algorithm is 

factor-based and fully compatible with common factor model assumptions (Kock, 2019a; 

2019b). The inner model analysis algorithm used was “Linear”. This algorithm does not perform 

any warping of relationships. Both outer and inner model algorithms are fully compatible with 

the way in which the simulated data was created via the Monte Carlo method. 

 

 

 
 

Figure 1: Two relationships to be assessed for reciprocity 

 

 
Notes: DM = democratic management; SJ = scarcity of comparable jobs; JS = job satisfaction; OC = organizational 

commitment; JP = job performance; notation under LV acronym describes measurement approach and number of 

indicators, e.g., (R)3i = reflective measurement with 3 indicators. 

 

 

 

 

 

Assessing multiple reciprocal relationships in PLS-SEM 

    In order to check for reciprocity with respect to the JS <> OC relationship, we first remove the 

link between JS and OC (Figure 2), and then control for endogeneity with respect to JS and OC 

(Figure 3). The endogeneity control is accomplished by employing the procedure discussed by 

Kock (2022b). It uses the menu option “Explore analytic composites and instrumental variables” 

of the software, with sub-options “Instrumental variable” and “Single stochastic variation 

sharing”. Here we control for endogeneity with respect to JS by using one instrument, namely SJ. 

We control for endogeneity with respect to OC by using one instrument, namely DM. 
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Figure 2: Removing the link to be assessed 

 

 
 

 

 

Figure 3: Controlling for endogeneity 

 

 
 

 

    We then proceed to check for reciprocity with respect to the JS <> OC relationship by using 

again the menu option “Explore analytic composites and instrumental variables” of the software, 

but now with sub-options “Instrumental variable” and “Reciprocal stochastic variation sharing” 

(Figure 4). As we can see, the software suggests that there is a reciprocal relationship. We then 

click “Yes” to create two instrumental variables, which we then add to the model (Figure 5). 



 

 

© ScriptWarp Systems, https://www.scriptwarp.com, page 4 

Data Analysis Perspectives Journal, 4(3), 1-8, June 2023 

 

Figure 4: Checking for reciprocity and finding it 

 

 
 

 

 

Figure 5: Model with reciprocal relationship 
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    Analogously, in order to check for reciprocity with respect to the OC <> JP relationship, we 

first remove the link between OC and JP, and then control for endogeneity with respect to JP 

(Figure 6). As before, the endogeneity control is accomplished by employing the procedure 

discussed by Kock (2022b). Here we control for endogeneity with respect to JP by using two 

instruments, namely DM and SJ. 

 

 

 
 

Figure 6: Removing the second link to be assessed and controlling for endogeneity 

 

 
 

 

 

 

 

    We then proceed to check for reciprocity with respect to the OC <> JP relationship by using 

again the menu option “Explore analytic composites and instrumental variables” of the software, 

with sub-options “Instrumental variable” and “Reciprocal stochastic variation sharing” (Figure 

7). As we can see, the software indicates that it cannot find a viable solution, which can be taken 

as evidence that there is not a reciprocal relationship. If we had originally hypothesized based on 

theory a direct relationship OC > JP we then conclude that the direct relationship is supported, 

keeping it in the final model (Figure 8). 
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Figure 7: Checking for reciprocity and not finding it 

 

 
 

 

 

Figure 8: Final model 
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Conclusion 

    Two LVs may influence each other in both directions, in what characterizes a reciprocal 

relationship. This paper discussed how one can assess multiple reciprocal relationships in PLS-

SEM. It is a follow-up on an article by Morrow & Conger (2021), which describes the process 

used in determining the presence of reciprocal relationships between the two job crafting 

constructs. We discussed the assessment of multiple reciprocal relationships, through an 

illustrative model analyzed with the software WarpPLS, Version 8.0. 
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