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1.1. Model-driven data analytics 

    The technique of model-driven data analytics (MDDA) involves the creation of a path model 

expressing an applied theory, and testing the model using path analysis with latent variables. The 

latter, path analysis with latent variables, is generally known as structural equation modeling 

(SEM). Figure 1.1 displays an example of a model with results. 
 

Figure 1.1. Example of model with results 

 

 
 

    The path model expressing an applied theory is typically made up of several latent variables 

that are causally linked. The latent variables may be measured through one or multiple 

indicators, which are usually available as columns of numeric data on a table-like dataset. 

Multiple indicators often help reduce the impact of measurement error on the various model 

parameters that are estimated. 

    The applied theory, expressed through the model, usually comes from organizational 

stakeholders. This applied theory typically does not come from the data analysts, because the 

main expertise of the analysts is usually on data analysis techniques, not on the applied domain 

for which data is being analyzed. Normally the applied domain consists of one or more 

organizations, and the key stakeholders are the employees and managers of those organizations. 

It is via discussions and interviews with those stakeholders that the analysts obtain the necessary 

applied knowledge to build a model. 

    MDDA emerged from the work of a special category of users of the software WarpPLS – data 

analysis consultants, who regularly work with organizations to provide data-driven 
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recommendations. While MDDA can be implemented through a variety of software tools, it has 

found wide adoption among WarpPLS users, because of the many powerful features of this 

software that can be used in this context. Moreover, in WarpPLS all analyses are model-driven, 

which makes this software much more user-friendly than other software tools that rely on 

extensive scripting to conduct analyses.  
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1.2. Creating a model with WarpPLS 

    The window used to create a model is shown in Figure 1.2. A model can be edited if it has 

been created and saved before as part of a WarpPLS project (these projects include the data used 

in the analysis, as well as the analysis results). While editing or creating a model you can choose 

from a number of menu options related to overall model functions, latent variable functions, 

direct link functions, and moderating link functions. As with other windows in WarpPLS, there 

is a help menu option that provides access to its manual, displayed as a PDF file. The help menu 

option also provides links to Web resources. 
 

Figure 1.2. Options to create a model 

 

 
 

    A guiding text box is shown at the top of the model editing and creation window. The content 

of this guiding text box changes depending on the menu option you choose, guiding you through 

the sub-steps related to each option. For example, if you choose the option “Create latent 

variable”, the guiding text box will change color, and tell you to select a location for the latent 

variable on the model graph. 

    Direct links are displayed as full arrows in the model graph, and moderating links as 

dashed arrows. Each latent variable is displayed in the model graph within an oval symbol, 

where its name is shown above a combination of alphanumerical characters with this general 

format: “(F)16i”. The “F” refers to the measurement model; where “F” means formative, and 

“R” reflective. The “16i” reflects the number of indicators of the latent variable, which in this 

case is 16. 

    A reflective latent variable is one in which all of the indicators are expected to be highly 

correlated with the latent variable, and also highly correlated with one another. For example, the 

answers to certain question-statements by a group of people, measured on a 1 to 7 scale 

(1=strongly disagree; 7 strongly agree) and answered after a meal, are expected to be highly 

correlated with the latent variable “satisfaction with a meal”. The question-statements are: “I am 
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satisfied with this meal”, and “After this meal, I feel full”. Therefore, the latent variable 

“satisfaction with a meal”, can be said to be reflectively measured through these indicators. 

    A formative latent variable is one in which the indicators are expected to measure certain 

attributes of the latent variable, but the indicators are not expected to be highly correlated with 

the latent variable, because they (i.e., the indicators) are not expected to be correlated with one 

another. For example, let us assume that the latent variable “Satisf” (“satisfaction with a meal”) 

is measured using the two following question-statements: “I am satisfied with the main course” 

and “I am satisfied with the dessert”. Both main course and dessert make up the meal (i.e., they 

are part of the same meal) but their satisfaction indicators are not expected to be highly 

correlated with each other. Some people may like the main course, and not like the dessert, or 

vice-versa. 

    Save model and close. This option saves the model within the project, and closes the model 

editing and creation window. This option does not, however, save the project file. That is, the 

project file has to be saved for a model to be saved as part of it. This allows you to open a project 

file, change its model, run a SEM analysis, and discard all that you have done, if you wish to do 

so, reverting back to the previous project file. 

    Centralize model graph. This option centralizes the model graph, and is useful when you are 

building complex models and, in the process of doing so, end up making the model visually 

unbalanced. For example, you may move variables around so that they are all accidentally 

concentrated on the left part of the screen. This option corrects that by automatically redrawing 

all symbols in the model graph so that the center of the model graph coincides with the center of 

the model screen. 

    Show/hide indicators. This option shows or hides the list of indicators for each latent 

variable. The indicators are shown on a vertical list next to each latent variable, and without the 

little boxes that are usually shown in other SEM software. This display option is used to give the 

model graph a cleaner look. It also has the advantage that it saves space in the model graph for 

latent variables. Normally you will want to keep the indicators hidden, except when you are 

checking whether the right indicators were selected for the right latent variables. That is, 

normally you will show the indicators to perform a check, and then hide them during most of the 

model building process. 

    Clear model (deletes all latent variables). This option deletes all latent variables, essentially 

“clearing” the model. Given that choosing this option by mistake can potentially cause some 

serious loss of work (not to mention some major user aggravation), the software shows a dialog 

box asking you to confirm that you want to clear the model before it goes ahead and deletes all 

latent variables. Even if you choose this option by mistake, and confirm your choice also by 

mistake (a double mistake), you can still undo it by choosing the option “Cancel model 

creation/editing (all editing is lost)” immediately after clearing the model. 

    Cancel model creation/editing (all editing is lost). This option cancels the model creation or 

editing, essentially undoing all of the model changes you have made. 

    Save model into image file. This option allows you to save the model graph into an image file 

(e.g., a .jpg or .png file). You will be asked to select the file name and the folder where the file 

will be saved. After saved, this file can then be viewed and edited with standard picture viewers, 

as well as included as a picture into reports in other files (e.g., a Word file). Users can also 

generate model graph files by copying the model screen into a picture-editing application (e.g., 

Paint), cropping it to leave out unnecessary or unneeded areas, saving it into a picture file (e.g., 

.jpg or .png), and then importing that file into reports. 



Model-Driven Data Analytics: Applications with WarpPLS 

 10 

    Create latent variable. This option allows you to create a latent variable, and is discussed in 

more detail below. Once a latent variable is created it can be dragged and dropped anywhere 

within the window that contains the model. 

    Edit latent variable. This option allows you to edit a latent variable that has already been 

created, and thus that is visible on the model graph. 

    Delete latent variable. This option allows you to delete an existing latent variable. All links 

associated with the latent variable are also deleted. 

    Move latent variable. This option is rarely used since, once a latent variable is created, it can 

be easily dragged and dropped with the pointing device (e.g., mouse) anywhere within the 

window that contains the model. This option is a carryover from a previous version, maintained 

for consistency and for those users who still want to use it. It allows a user to move a latent 

variable across the model by first clicking on the variable and then on the destination position. 

    Create direct link. This option allows you to create a direct link between one latent variable 

and another. The arrow representing the link points from the predictor latent variable to the 

criterion latent variable. Direct links are usually associated with direct cause-effect hypotheses; 

testing a direct link’s strength (through the calculation of a path coefficient) and statistical 

significance (through the calculation of a P value) is equivalent to testing a direct cause-effect 

hypothesis. 

    Delete direct link. This option allows you to delete an existing direct link. You will click on 

the direct link that you want to delete, after which the link will be deleted. 

    Delete all direct links. This option deletes all direct links. Given that choosing this option by 

mistake is a possibility, the software shows a dialog box asking you to confirm that you want to 

execute it before it proceeds. Even if you choose this option by mistake, and confirm your choice 

also by mistake, you can still undo it by choosing the option “Cancel model creation/editing (all 

editing is lost)”. 

    Create moderating link. This option allows you to create a link between a latent variable and 

a direct link. With some exceptions, both formative and reflective latent variables can be part of 

moderating links. Moderating links are typically associated with moderating cause-effect 

hypotheses, or interaction effect hypotheses. Testing a moderating link’s strength (through the 

calculation of a path coefficient) and statistical significance (through the calculation of a P value) 

is equivalent to testing a moderating cause-effect or interaction effect hypothesis. Moderating 

links should be used with moderation (no pun intended), because they may introduce 

multicollinearity into the model, and also because they tend to add nonlinearity to the model. By 

introducing multicollinearity into the model, they may make some model parameter estimates 

unstable and biased. 

    Delete moderating link. This option allows you to delete an existing moderating link. You 

will click on the moderating link that you want to delete, after which the link will be deleted. 

    Delete all moderating links. This option deletes all moderating links. Given that choosing 

this option by mistake is a possibility, the software shows a dialog box asking you to confirm 

that you want to execute it before it proceeds. Even if you choose this option by mistake, and 

confirm your choice also by mistake, you can still undo it by choosing the option “Cancel model 

creation/editing (all editing is lost)”. 

    After you create a model and choose the option “Save model and close” a wait bar will be 

displayed on the screen telling you that the SEM model structure is being created. This is an 

important sub-step where a number of checks are made.  
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1.3. Choosing analysis settings in WarpPLS 

    The options shown in Figure 1.3 are common in MDDA analyses that employ latent variables 

with single indicators, which is a common feature of these analyses. They are set through the 

“View or change general settings” menu option, which allows users to set the outer model 

analysis algorithm, default inner model analysis algorithm, resampling method, and number of 

resamples. Through these sub-options, users can set outer and default inner model algorithms 

separately. Users are also allowed to set inner model algorithms for individual paths, but through 

a different settings option. If users choose not to set inner model algorithms for individual paths, 

their choice of default inner model algorithm is automatically used for all paths. 
 

Figure 1.3. Choosing analysis settings in WarpPLS 

 

 
 

    In a SEM analysis implementing MDDA, the inner model is the part of the model that 

describes the relationships among the latent variables that make up the model. In this sense, the 

path coefficients are inner model parameter estimates. These path coefficients are obtained by 

regressing a latent variable on the latent variables that are assumed to predict it; i.e., that point at 

it. The outer model is the part of the model that describes the relationships among the latent 

variables that make up the model and their indicators. In this sense, the weights and loadings are 

outer model parameter estimates. The weights are obtained by regressing a latent variable on its 

indicators; the loadings by regressing the indicators on their latent variable. 

    The Robust Path Analysis algorithm is a simplified algorithm in which latent variable scores 

are calculated by averaging the scores of the indicators associated with the latent variables. This 

algorithm is called “robust” path analysis, because a standard path analysis (where all latent 

variables are measured through single indicators) can be conducted through it, and the P values 

can be calculated through the nonparametric resampling or stable methods implemented through 

the software. If all latent variables are measured with single indicators, the Robust Path Analysis 

algorithm will yield latent variable scores and various parameters that are identical to those 

generated through the other algorithms, but with greater computational efficiency. 

    The Linear algorithm does not perform any warping of relationships; that is, it does not model 

the relationships as nonlinear. Other default inner model analysis algorithms can be employed to 

do that. For example, the Warp2 algorithm tries to identify U-curve relationships among linked 
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latent variables, and, if those relationships exist, the algorithm transforms (or “warps”) the scores 

of the predictor latent variables so as to better reflect the U-curve relationships in the estimated 

path coefficients in the model. 

    The Stable3 method is the default resampling method of the software. Several Monte Carlo 

experiments show that the Stable2 and Stable3 methods yield estimates of the actual standard 

errors that are consistent with those obtained via bootstrapping, in many cases yielding more 

precise estimates of the actual standard errors. These standard errors are then used to produce P 

values, which tell the analyst whether the corresponding coefficients (e.g., path coefficients) 

refer to effects that appear to be “real” (i.e., not due to chance). Typically P values equal to or 

lower than 0.05 will refer to effects are “real” in this sense. The more accurate of the two 

methods seems to be the Stable3 method, which is why it is the default method.  
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1.4. Inspecting graphs in WarpPLS 

    Choosing the menu option “View/plot linear and nonlinear relationships among latent 

variables” causes the software to show a table with the types of relationships, warped or linear, 

between latent variables that are linked in the model (see Figure 1.4.1). The term “warped” is 

used for relationships that are clearly nonlinear, and the term “linear” for linear or quasi-linear 

relationships. Quasi-linear relationships are slightly nonlinear relationships, which look linear 

upon visual inspection on plots of the regression curves that best approximate the relationships. 
 

Figure 1.4.1. Linear and nonlinear (“warped”) relationships among latent variables window 

 

 
 

Figure 1.4.2. Graph options for direct effects including one with points and best-fitting curve 

 

 
 

    Several graphs (a.k.a. plots) for direct effects can be viewed by clicking on a cell containing a 

relationship type description. These cells are the same as those that contain path coefficients, in 

the path coefficients table that is available from the software under the option “View path 

coefficients and P values”; the path coefficients are also shown on the model graph with results, 

but with reduced two-decimals precision. Among the options available are graphs showing the 

points as well as the curves that best approximate the relationships (see Figure 1.4.2). Also 

graphs with both standardized and unstandardized scales are available.  
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1.5. Assessing collinearity, validity, and reliability 

    Assessing collinearity. Variance inflation factors (VIFs) are measures of the degree of 

collinearity (or multicollinearity) among variables, including both indicators and latent variables. 

With latent variables, collinearity can take two main forms: vertical and lateral collinearity. 

Vertical, or classic, collinearity is predictor-predictor latent variable collinearity in individual 

latent variable blocks. (A latent variable block is a set of latent variables including those pointing 

at a criterion latent variable, plus that criterion latent variable.)  

    Lateral collinearity is a term that refers to predictor-criterion latent variable collinearity; a type 

of collinearity that can lead to particularly misleading results. Full collinearity VIFs allow for the 

simultaneous assessment of both vertical and lateral collinearity in a SEM model. They can also 

be used for common method bias and discriminant validity assessment. 

    Full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 

model. A more relaxed threshold would be 5. This means that all of the latent variables in the 

model measure different “things” (e.g., mental concepts, or ideas), which is an important 

precondition for a valid analysis. Full collinearity VIFs of 10 or higher suggest the existence of 

multicollinearity in the model. Multicollinearity at this level, with full collinearity VIFs of 10 or 

higher, tends to distort coefficients of association, such as path coefficients. 

    Assessing validity and reliability. A reflective latent variable is one in which all of the 

indicators are expected to be highly correlated with the latent variable, and also highly correlated 

with one another. For example, the answers to certain question-statements by a group of people, 

measured on a 1 to 7 scale (1=strongly disagree; 7 strongly agree) and answered after a meal, are 

expected to be highly correlated with the latent variable “satisfaction with a meal”. The question-

statements are: “I am satisfied with this meal”, and “After this meal, I feel full”. Therefore, the 

latent variable “satisfaction with a meal”, can be said to be reflectively measured through these 

indicators. 

    A formative latent variable is one in which the indicators are expected to measure certain 

attributes of the latent variable, but the indicators are not expected to be highly correlated with 

the latent variable, because they (i.e., the indicators) are not expected to be correlated with one 

another. For example, let us assume that the latent variable “Satisf” (“satisfaction with a meal”) 

is measured using the two following question-statements: “I am satisfied with the main course” 

and “I am satisfied with the dessert”. Both main course and dessert make up the meal (i.e., they 

are part of the same meal) but their satisfaction indicators are not expected to be highly 

correlated with each other. Some people may like the main course, and not like the dessert, or 

vice-versa. 

    The assessment of convergent validity, discriminant validity, and reliability, as discussed 

in the next few paragraphs, applies to reflective measurement of latent variables (which is 

much more common than formative measurement). Reflective latent variable indicators that do 

not satisfy the criteria discussed below may be considered for removal, or, in some cases, re-

allocation to other latent variables. Examples of the use of these criteria are discussed later, in the 

context of one or more applications. 

    Convergent validity is a measure of the quality of a measurement instrument; the instrument 

itself is typically a set of question-statements (i.e., a questionnaire). A measurement instrument 

has good convergent validity if the question-statements (or other measures) associated with each 

latent variable are understood by the respondents in the same way as they were intended by the 

designers of the question-statements. Two criteria are recommended as the basis for concluding 
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that a measurement model has acceptable convergent validity: that the P values associated with 

the loadings be equal to or lower than 0.05; and that the loadings be equal to or greater than 

0.5. 

    Discriminant validity is also a measure of the quality of a measurement instrument. A 

measurement instrument has good discriminant validity if the question-statements (or other 

measures) associated with each latent variable are not confused by the respondents, in terms of 

their meaning, with the question-statements associated with other latent variables. The following 

criterion is recommended for discriminant validity assessment: for each latent variable, the 

square root of the average variance extracted (AVE) should be higher than any of the 

correlations involving that latent variable. 

    Reliability is yet another measure of the quality of a measurement instrument; the instrument 

itself is typically a set of question-statements. A measurement instrument has good reliability if 

the question-statements (or other measures) associated with each latent variable are understood 

in the same way by different respondents. The following criterion is suggested in the assessment 

of the reliability of a measurement instrument: either the composite reliability or the 

Cronbach’s alpha coefficient should be equal to or greater than 0.6. 

    For formative measurement, different criteria are used, notably the following two. It is 

recommended that weights with P values that are equal to or lower than 0.05 be considered 

valid items in a formative latent variable measurement item subset. Formative latent variable 

indicators whose weights do not satisfy this criterion may be considered for removal. 

    In addition to P values, VIFs are provided for the indicators of all latent variables, including 

moderating latent variables. These can be used for indicator redundancy assessment. In reflective 

latent variables indicators are expected to be redundant. This is not the case with formative latent 

variables. In formative latent variables indicators are expected to measure different facets of the 

same construct, which means that they should not be redundant. Therefore, here the VIF 

threshold of 3.3 is recommended. Formative latent variable indicators whose weights do not 

satisfy this criterion may be considered for removal.  



Model-Driven Data Analytics: Applications with WarpPLS 

 16 

1.6. Other introductory remarks 

    The applications presented in this document show how MDDA can be employed in a variety 

of different contexts, where typically data is collected from organizations with the goal of 

answering questions that ultimately affect the ability of the organizations to grow their sales and 

profits. 

    As you will see, the applications follow a similar set of steps, such as: create model, choose 

general settings, assess collinearity, assess validity and reliability, inspect path coefficients, 

inspect graphs, and provide advice. 

    There is repetition across applications, of both steps and the text that describes them. Our 

experience is that this repetition helps with the internalization of complex concepts and 

techniques, while at the same time making each application section fairly self-contained. That is, 

one can jump from one application to another without having to review all of them in sequence. 

    Revised text and other materials from previously published documents by the author have 

been used in the development of this book. Some of the data discussed here have been compiled 

based on publicly available sources, some have been created via Monte Carlo simulations based 

on empirical studies, and some have been produced as a mix of both approaches. 

    For ethical reasons, and to protect individual privacy, all of the individual-level data have 

been created via Monte Carlo simulations, based on empirical studies – to mimic what happened 

with real data. 

    A glossary is available at the end of this document. This glossary includes terms that go 

beyond those used in the applications discussed in this document. We are including this extended 

set of terms here because some readers may want to go beyond the features discussed in the 

applications, and explore other more advanced features that refer to some of the terms in this 

extended set.  
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Part 2: Applications 
 

  



Model-Driven Data Analytics: Applications with WarpPLS 

 18 

2.1. Increasing SAT scores in a U.S. state 

    Exhibit 2.1 displays the scenario, question, and variables related to the sample dataset used to 

illustrate how MDDA can be used to address the need for increasing SAT scores in a U.S. state. 

The acronym SAT originally referred to the term “Scholastic Aptitude Test”; a standardized test 

widely used for college admissions in the U.S. 
 

Exhibit 2.1. Scenario, question, and variables 

 

 

Scenario  

    - The Department of Education of a state in the USA believes that SAT scores are strongly influenced by two 

predictor variables. 

    - Data is collected from a number of school districts in the state, for a given year, and a data analysis is 

commissioned. 

 

Question 

    - What is the order of importance of the predictors with respect to SAT scores? 

 

Variables 

    TchExp: Average years of teaching experience by the school district teachers. 

    Susp: Number of suspensions in the district due to student behavioral problems. 

    SAT: Average SAT score in school district. 

 

 

    The problem to be solved is a common one in MDDA applications, namely to assess the order 

of importance of likely predictors of a main criterion variable. In this case, the predictors are 

TchExp (average years of teaching experience by the school district teachers) and Susp (number 

of suspensions in the district due to student behavioral problems). The main criterion variable is 

SAT (average SAT score in school district). 

    The main client of this analysis was the Department of Education of a state in the U.S. This 

organization wanted to know what they could do to increase SAT scores in the school districts 

under its jurisdiction. The expectation that the two predictors (TchExp and Susp) influenced SAT 

scores came from interviews with various stakeholders in the Department of Education and the 

school districts. 

    The importance of this analysis came from the costs associated with changing the predictors 

with the goal of increasing average SAT scores in the school districts. Changing the average 

years of teaching experience by the school districts’ teachers, presumably by increasing them, 

would probably require financial incentives (e.g., higher pay, better benefits). Changing the 

number of suspensions in the districts due to student behavioral problems, presumably by 

decreasing them, would probably require additional labor resources (e.g., additional security 

workers, more counseling personnel).  
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2.1.1. Create the model 

    Figure 2.1.1 shows the model that was built to serve as the basis for our analysis. It contains 

two predictor latent variables, named TchExp and Susp, pointing at one criterion latent variable, 

named SAT. The latent variables have only one indicator each, which essentially means that they 

are assumed to be measured through their single indicators without error. 
 

Figure 2.1.1. Create the model 

 

 
 

     As you can see, the latent variables have the same names as their indicators. This is not a 

requirement. The names could have been different. In fact, they will typically be different for 

latent variables that are measured through multiple indicators. They will also be different if the 

indicators’ names are longer than 8 characters, which is the maximum allowed for latent 

variables names. This limitation is to give model graphs a cleaner look.  
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2.1.2. Choose general settings 

    The options shown in Figure 2.1.2 were the ones chosen for this analysis. They are common in 

analyses that employ latent variables that are all measured through single indicators, as is the 

case in our model. The options can be selected through the “View or change general settings” 

menu option. 
 

Figure 2.1.2. Choose general settings 

 

 
 

    The Robust Path Analysis outer model analysis algorithm is a simplified algorithm with very 

good computational efficiency. The Linear default inner model analysis algorithm does not 

perform any warping of relationships; that is, it does not model the relationships as nonlinear. 

This helps with the interpretation of the results. The Stable3 method is the default resampling 

method of the software, because of its high accuracy and robustness to deviations of normality. 

An advantage of this method is that it does not assume that the data is normally distributed, 

which is often the case with empirical data. That is, empirical data is typically not normally 

distributed, even though many data analysis techniques assume that it is.  
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2.1.3. Assess collinearity 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, which also contains a number of menu options that allow you to view and save 

more detailed results. One of these menu options is the “View latent variable coefficients”, 

which shows the results in the table in Figure 2.1.3. The last row of the table in the figure shows 

the full collinearity VIFs for all latent variables in the model. 
 

Figure 2.1.3. Assess collinearity 

 

 
 

    Full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 

model. A more relaxed threshold would be 5. This means that all of the latent variables in the 

model measure different things, which is an important precondition for a valid analysis. Full 

collinearity VIFs of 10 or higher suggest the existence of multicollinearity in the model. 

Multicollinearity at this level, with full collinearity VIFs of 10 or higher, tends to distort 

coefficients of association, such as path coefficients. 

    As we can see, the highest full collinearity VIF in the model is 1.099, well below the 

conservative threshold of 3.3, which allows us to conclude that all of the latent variables in the 

model measure different things. That is, the latent variables in the model measure constructs that 

appear to be conceptually different from one another.  
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2.1.4. Inspect path coefficients 

    As soon as the SEM analysis is completed, the software shows some of the main results in 

graphical format on a window. This graphical representation is shown in Figure 2.1.4. The graph 

with the results shows path coefficients, respective P values, and R-squared coefficients. Users 

can also show or hide indicators weights, loadings and names. 
 

Figure 2.1.4. Inspect path coefficients 

 

 
 

    The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often 

used to refer to path coefficients in SEM analyses; this term is commonly used in multiple 

regression analyses as well. The P values are displayed below the path coefficients, within 

parentheses. The R-squared coefficients are shown below each endogenous latent variable (i.e., a 

latent variable that is hypothesized to be affected by one or more other latent variables), and 

reflect the percentage of the variance in the latent variable that is explained by the latent 

variables that are hypothesized to affect it. 

    Path coefficients associated with P values equal to or lower than 0.05 are deemed to refer to 

real effects, as opposed to effects that are to be interpreted as “zero”. The path coefficient for the 

link TchExp > SAT is positive and associated with a P value of 0.03, therefore it refers to a real 

effect that is positive. This path coefficient is 0.22, meaning that each standard deviation increase 

in TchExp is associated with a 0.22 standard deviation variation in SAT. The path coefficient for 

the link Susp > SAT is associated with a P value of 0.32, therefore it refers to an effect that is to 

be interpreted as “zero” – or no effect.  
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2.1.5. Inspect graphs 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, where the menu option menu option “View/plot linear and nonlinear 

relationships among latent variables” becomes available. One of the graphs that is particularly 

useful is available from the option “View focused multivariate relationship graph with 

segments (unstandardized scales)”. This graph representation is shown in Figure 2.1.5. 
 

Figure 2.1.5. Inspect graphs 

 

 
 

    Unlike a path coefficient, which is standardized, the graph shows the corresponding 

unstandardized regression coefficient. This type of coefficient tends to be more telling to 

stakeholders. In this case, the unstandardized regression coefficient for the link TchExp > SAT is 

10.39. The meaning of this is that, for each increase of 1 year in the variable TchExp (average 

years of teaching experience by the school district teachers), there is a corresponding increase in 

10.39 points in the variable SAT (average SAT score in school district).  
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2.1.6. Provide advice 

    One of the goals of the analysis was to answer the question: What is the order of importance of 

the predictors with respect to SAT scores? The inspection of the path coefficients suggests that 

TchExp (average years of teaching experience by the school district teachers) is the most 

important predictor of the two. Moreover, the inspection of the path coefficients suggests that 

Susp (number of suspensions in the district due to student behavioral problems) has no effect on 

SAT scores. 

    Given this, the Department of Education of the state in the U.S. from which the data was 

obtained should arguably be advised to try to increase the average years of teaching experience 

by the school district teachers, so that SAT scores would increase. This could be done by 

providing financial incentives, such as higher pay and better benefits, to retain teachers for as 

long as possible.  

    Also, the Department of Education should arguably be advised to ignore the number of 

suspensions due to student behavioral problems, at least as far as improving SAT scores is 

concerned. The finding that number of suspensions is unrelated to SAT scores could have an 

explanation, but the data does not allow us to reach a conclusion about this with confidence. We 

could speculate that very smart students are more rebellious, which is an association that could 

offset the possible problem caused by those students being suspended more frequently than other 

students.  
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2.2. Improving satisfaction with car part delivery 

    Exhibit 2.2 displays the scenario, question, and variables related to the sample dataset used to 

illustrate how MDDA can be used to address the need for improving the delivery of car parts by 

a manufacturer to its main customer – an automaker. The problem to be solved is a common one 

in MDDA applications, namely to assess the order of importance of likely predictors of a main 

criterion variable.  
 

Exhibit 2.2. Scenario, question, and variables 

 

 

Scenario  

    - A car parts manufacturer has been receiving multiple complaints from its main customer, an automaker, 

regarding part delivery. 

    - The car parts manufacturer decides to collect data about satisfaction with car part delivery, based on 4 possible 

predictor variables. 

 

Question 

    - What is the order of importance of the predictors with respect to satisfaction with car part delivery? 

 

Variables 

    Packg: The quality of the packaging of the car part(s), as perceived by the automaker on a 1-7 scale. 

    Crtsy: The courtesy of the deliverer, as perceived by the automaker on a 1-7 scale. 

    Cost: The freight cost, measured in dollars. 

    Late: How late the delivery is, measured in days. 

    Satsf: The satisfaction with the delivery, as perceived by the automaker on a 1-7 scale. 

 

 

    In this case, the predictors are Packg (the quality of the packaging of the car part(s), as 

perceived by the automaker on a 1-7 scale), Crtsy (the courtesy of the deliverer, as perceived by 

the automaker on a 1-7 scale), Cost (the freight cost, measured in dollars), and Late (how late the 

delivery is, measured in days). The main criterion variable is Satsf (the satisfaction with the 

delivery, as perceived by the automaker on a 1-7 scale). 

    The main client of this analysis was the car parts manufacturer. This organization wanted to 

know what they could do to increase satisfaction with car part delivery by its main customer – an 

automaker. Automakers like Ford typically outsource the manufacturing of car parts (e.g., 

exhaust pipes, breaks), which they use for assembly – i.e., most car parts are not manufactured 

directly by the automakers.  

    The expectation that the four predictors (Packg, Crtsy, Cost and Late) influence the 

satisfaction with the deliveries came from interviews with various stakeholders in the car parts 

manufacturer and the automaker. 

    The importance of this analysis came from the different costs associated with changing the 

predictors with the goal of increasing satisfaction with the deliveries. For example, changing the 

courtesy of the deliverer, through a training program, could be significantly less expensive than 

changing the freight cost. The latter might require the car parts manufacturer to cover a portion 

of that cost, possibly reducing its profit margin in a material way.  
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2.2.1. Create the model 

    Figure 2.2.1 shows the model that was built to serve as the basis for our analysis. It contains 

four predictor latent variables – named Packg, Crtsy, Cost and Late – pointing at one criterion 

latent variable, named Satsf. The latent variables have only one indicator each, which essentially 

means that they are assumed to be measured through their single indicators without error. 
 

Figure 2.2.1. Create the model 

 

 
 

    The assumption that a latent variable is measured without error may not be entirely correct, 

especially when what are measured are perceptions (e.g., satisfaction with something), and 

frequently may be made for convenience. Whenever possible, multiple indicators should be used 

with perception-based latent variables, because that enables SEM to minimize the effect of 

measurement error on the parameters being estimated (e.g., path coefficients). If that is not 

possible, data analysts have to do the best that they can with what they have available, 

recognizing the limitations of what they are doing. 

    As you can see, the latent variables have the same names as their indicators. This is not a 

requirement. The names could have been different. In fact, they will typically be different for 

latent variables that are measured through multiple indicators. They will also be different if the 

indicators’ names are longer than 8 characters, which is the maximum allowed for latent 

variables names. This limitation is to give model graphs a cleaner look.  
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2.2.2. Choose general settings 

    The options shown in Figure 2.2.2 were the ones chosen for this analysis. They are common in 

analyses that employ latent variables that are all measured through single indicators, as is the 

case in our model. The options can be selected through the “View or change general settings” 

menu option. 
 

Figure 2.2.2. Choose general settings 

 

 
 

    The Robust Path Analysis outer model analysis algorithm is a simplified algorithm with very 

good computational efficiency. The Linear default inner model analysis algorithm does not 

perform any warping of relationships; that is, it does not model the relationships as nonlinear. 

This helps with the interpretation of the results. The Stable3 method is the default resampling 

method of the software, because of its high accuracy and robustness to deviations of normality. 

An advantage of this method is that it does not assume that the data is normally distributed, 

which is often the case with empirical data. That is, empirical data is typically not normally 

distributed, even though many data analysis techniques assume that it is.  



Model-Driven Data Analytics: Applications with WarpPLS 

 28 

2.2.3. Assess collinearity 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, which also contains a number of menu options that allow you to view and save 

more detailed results. One of these menu options is the “View latent variable coefficients”, 

which shows the results in the table in Figure 2.2.3. The last row of the table in the figure shows 

the full collinearity VIFs for all latent variables in the model. 
 

Figure 2.2.3. Assess collinearity 

 

 
 

    Full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 

model. A more relaxed threshold would be 5. This means that all of the latent variables in the 

model measure different things, which is an important precondition for a valid analysis. Full 

collinearity VIFs of 10 or higher suggest the existence of multicollinearity in the model. 

Multicollinearity at this level, with full collinearity VIFs of 10 or higher, tends to distort 

coefficients of association, such as path coefficients. 

    As we can see, the highest full collinearity VIF in the model is 2.171, well below the 

conservative threshold of 3.3, which allows us to conclude that all of the latent variables in the 

model measure different things. That is, the latent variables in the model measure constructs that 

appear to be conceptually different from one another.  
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2.2.4. Inspect path coefficients 

    As soon as the SEM analysis is completed, the software shows some of the main results in 

graphical format on a window. This graphical representation is shown in Figure 2.2.4. The graph 

with the results shows path coefficients, respective P values, and R-squared coefficients. Users 

can also show or hide indicators weights, loadings and names. 
 

Figure 2.2.4. Inspect path coefficients 

 

 
 

    The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often 

used to refer to path coefficients in SEM analyses; this term is commonly used in multiple 

regression analyses as well. The P values are displayed below the path coefficients, within 

parentheses. The R-squared coefficients are shown below each endogenous latent variable (i.e., a 

latent variable that is hypothesized to be affected by one or more other latent variables), and 

reflect the percentage of the variance in the latent variable that is explained by the latent 

variables that are hypothesized to affect it. 

    Path coefficients associated with P values equal to or lower than 0.05 are deemed to refer to 

real effects, as opposed to effects that are to be interpreted as “zero”. In this sense, all of the path 

coefficients in this model refer to effects that appear to be real. The strongest path coefficient is 

for the link Crtsy > Satsf; the higher is the courtesy of the deliverer, the higher is the satisfaction 

with the delivery. The strength of a path coefficient depends on its absolute value; i.e., the sign is 

disregarded. Thus, the second strongest path coefficient is for the link Late > Satsf; the later the 
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delivery is completed, the lower is the satisfaction with the delivery. Cost (the freight cost) and 

Packg (the quality of the packaging) are far behind the other two predictors in terms of the 

strength of their associations with Satsf (the satisfaction with the delivery).  
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2.2.5. Inspect graphs 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, where the menu option menu option “View/plot linear and nonlinear 

relationships among latent variables” becomes available. One of the graphs that is particularly 

useful is available, under this option, from the option “View focused multivariate relationship 

graph with segments (unstandardized scales)”. This graph representation is shown in Figure 

2.2.5; with two graphs, for the links Crtsy > Satsf and Late > Satsf, respectively at the top and 

bottom. 
 

Figure 2.2.5. Inspect graphs 

 

 

 
 

    Unlike a path coefficient, which is standardized, the graph shows the corresponding 

unstandardized regression coefficient. This type of coefficient tends to be more telling to 

stakeholders. In this case, the unstandardized regression coefficient for the link Crtsy > Satsf is 

0.50. The meaning of this is that, for each increase of 1 point in the variable Crtsy (the courtesy 

of the deliverer, as perceived by the automaker on a 1-7 scale), there is a corresponding increase 
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of 0.50 points in the variable Satsf (the satisfaction with the delivery, as perceived by the 

automaker on a 1-7 scale). 

    The unstandardized regression coefficient for the link Late > Satsf is -0.13. The meaning of 

this is that, for each increase of 1 day in the variable Late (how late the delivery is, measured in 

days), there is a corresponding decrease of -0.13 points in the variable Satsf (the satisfaction with 

the delivery, as perceived by the automaker on a 1-7 scale).  

    Note that Late (how late the delivery is, measured in days) assumes negative values; these are 

cases in which the delivery occurred early, or before the expected date of delivery. As you can 

see, when unstandardized values are considered, the importance of the link Crtsy > Satsf over 

Late > Satsf becomes more apparent than when we inspected only the standardized path 

coefficients. The unstandardized values are farther apart, in absolute terms, than the 

corresponding standardized values.  
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2.2.6. Provide advice 

    One of the goals of the analysis was to answer the question: What is the order of importance of 

the predictors with respect to satisfaction with car part delivery? The inspection of the path 

coefficients suggests that Crtsy (the courtesy of the deliverer, as perceived by the automaker on a 

1-7 scale) is the most important predictor, followed by these predictors in order of importance: 

Late (how late the delivery is, measured in days); Cost (the freight cost, measured in dollars); 

and Packg (the quality of the packaging of the car part(s), as perceived by the automaker on a 1-7 

scale). 

    Given this, the car parts manufacturer from which the data was obtained should arguably be 

advised to try to increase the courtesy of the deliverers of its car parts, so that satisfaction with 

car part deliveries would increase. This could be done through a training program focused on 

courtesy in the context of car part deliveries. This type of intervention could be significantly less 

expensive than initiatives aimed at changing the other predictors. 

    Also, the car parts manufacturer should arguably be advised to target only courtesy in the 

context of car part deliveries at first, and then conduct a follow-up analysis. The reason for this is 

that the importance of the other variables (Packg, Cost and Late) may increase as Crtsy reaches a 

higher level at which its variation decreases – i.e., all deliveries are equally high in terms of 

courtesy. 

    As the variation in Crtsy decreases, it may become a less important predictor of satisfaction 

with car part delivery when compared with the other predictors. Also, the relative importance of 

the other predictors may change (e.g., one may become significantly more important than it was 

before), calling for a different prioritization scheme. 

    Analogously, one could speculate that something similar to the above scenario might have 

been the case with Packg. That is, its relatively weak influence as a predictor in this analysis 

might simply have been due to the fact that the quality of the packaging of the car part(s) was 

good enough in this first analysis, and/or showed only a small amount of variation, compared 

with the other predictors.  
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2.3. Improving job performance through empathetic 
management 

    Exhibit 2.3 displays the scenario, question, and variables related to the sample dataset used to 

illustrate how MDDA can be used to address the need of a large insurance company for 

improving job performance, via techniques that emphasize empathetic management. 
 

Exhibit 2.3. Scenario, question, and variables 

 

 

Scenario  

    - A large insurance company wants to improve the performance of its employees by employing "empathetic 

management" techniques. 

    - Empathetic management techniques emphasize the development of positive emotions in employees, as opposed 

to fear of termination. 

    - The insurance company decides to train the managers of a 250-employee unit on the use of empathetic 

management techniques. 

    - The insurance company also decides to collect data about 5 variables, 4 of which are measured through multiple 

indicators (i.e., they are "latent" variables). 

    - It is believed that empathetic management will improve job satisfaction, job innovativeness, and organizational 

commitment. 

    - It is also believed that, through the mediated effects above, empathetic management will improve job 

performance. 

 

Question 

    - Is the effect of empathetic management on job performance mediated? If yes, is the mediation full or partial? 

 

Variables 

    EM: Empathetic management, as perceived by employees on 1-7 scales via the question-statements below 

(indicators). 

        EM1: My supervisor gives me praise for my good work. 

        EM2: My supervisor shows me encouragement for my work efforts. 

        EM3: My supervisor shows concern about my job satisfaction. 

    JS: Job satisfaction, as perceived by employees on 1-7 scales via the question-statements below (indicators). 

        JS1: I always feel satisfied with my job. 

        JS2: I like my job. 

        JS3: I do not want to change my job. 

    JI: Job innovativeness, as perceived by employees on 1-7 scales via the question-statements below (indicators).  

        JI1: I try new ideas and approaches to problems. 

        JI2: I welcome uncertainty and unusual circumstances related to my tasks. 

        JI3: I can be counted on to find a new use for existing methods or equipment. 

    OC: Organizational commitment, as perceived by employees on 1-7 scales via the question-statements below 

(indicators). 

        OC1: I would be very happy to spend the rest of my career with this organization. 

        OC2: I feel a strong sense of belonging to my organization. 

        OC3: I feel ‘emotionally attached’ to this organization. 

    JP: Job performance, as perceived by employees' supervisors on a 1-7 scale via the question below (from annual 

evaluation). 

        JP1: How would you rate the performance of this employee? 

 

 

    Here the MDDA analysis is aimed at finding out if the effect of empathetic management on 

job performance is mediated by intermediate effects on job satisfaction, job innovativeness, and 
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organizational commitment. Also, the organization wanted to find out if the mediation is full or 

partial. If the mediation is full, this would mean that no mediating variable has been omitted, and 

that the model is complete in that respect. If the mediation is partial, then one or more variables 

would have been omitted, and it might be a good idea to try to identify them in future analyses. 

    The variables used in this analysis are EM (empathetic management, as perceived by 

employees on 1-7 scales via 3 question-statements), JS (job satisfaction, as perceived by 

employees on 1-7 scales via 3 question-statements), JI (job innovativeness, as perceived by 

employees on 1-7 scales via 3 question-statements), and OC (organizational commitment, as 

perceived by employees on 1-7 scales via 3 question-statements), and JP (job performance, as 

perceived by employees' supervisors on a 1-7 scale via 1 question from their annual evaluations). 

    The importance of this analysis comes from the interest of the large insurance company in 

ways to improve the performance of its employees by employing management techniques that 

emphasize the development of positive emotions in employees, as opposed to fear of 

termination. These empathetic management techniques essentially entail supervisors giving 

employees praise for good work, encouragement for work efforts, as well as showing concern for 

the employee’s job satisfaction. 

    If these techniques are successful, they can potentially make the insurance company a “best 

place to work”. This would attract labor talent, and generate positive publicity for the company, 

among other advantages. All of these would likely make the company more competitive, which 

would ultimately lead to relative gains in sales and profits compared with other companies in the 

same industry.  
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2.3.1. Create the model 

    Figure 2.3.1 shows the model that was built to serve as the basis for our analysis. It contains 

five latent variables – named EM (empathetic management), JS (job satisfaction), JI (job 

innovativeness), OC (organizational commitment), and JP (job performance). The variables JS, 

JI and OC are assumed by the model to mediate the relationship between EM and JP. Four of the 

latent variables (EM, JS, JI and OC) have three indicators each, which essentially means that 

they are assumed to be measured with error. One of the latent variables (JP) has only one 

indicator, which means that it is assumed to be measured without error. 
 

Figure 2.3.1. Create the model 

 

 
 

    The assumption that a latent variable is measured without error may not be entirely correct, 

and frequently may be made for convenience. Whenever possible, multiple indicators should be 

used, because that enables SEM to minimize the effect of measurement error on the parameters 

being estimated (e.g., path coefficients). If that is not possible, data analysts have to do the best 

that they can with what they have available, recognizing the limitations of what they are doing. 

    In our illustrative case, JP is assumed to be measured without error because there was only one 

supervisor evaluation score for each employee in our dataset. One could reasonably argue that 

those supervisor evaluation scores were imprecise measures of the employees’ actual 

performance, violating the measurement without error assumption. This would tend to suppress 

the values of the path coefficients for the links pointing at JP. That is a limitation that would 
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make the data analysis results more conservative; i.e., one may not find an effect, when in reality 

there is a real underlying effect. 

    As you can see, the latent variables have the same names as their indicators, minus the number 

identifies (e.g., “1” for JS1). This is not a requirement. The names could have been different. In 

fact, they will typically be different for latent variables that are measured through multiple 

indicators when those indicators’ names differ from one another. They will also be different if 

the indicators’ names are longer than 8 characters, which is the maximum allowed for latent 

variables names. This limitation is to give model graphs a cleaner look.  
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2.3.2. Choose general settings 

    The options shown in Figure 2.3.2 were the ones chosen for this analysis. They are common in 

exploratory analyses that employ one or more latent variables that are measured through multiple 

indicators, as is the case in our model. The options can be selected through the “View or change 

general settings” menu option. 
 

Figure 2.3.2. Choose general settings 

 

 
 

    PLS Regression has been the default outer model algorithm since the software’s inception. 

This algorithm iterates by making the outer model weights directly proportional to the loadings, 

until the weights become stable. This algorithm does not let the inner model influence the outer 

model. The weights are obtained by regressing the latent variables on their indicators, and the 

loadings by regressing the indicators on the latent variables. 

    The Linear default inner model analysis algorithm does not perform any warping of 

relationships; that is, it does not model the relationships as nonlinear. This helps with the 

interpretation of the results. The Stable3 method is the default resampling method of the 

software, because of its high accuracy and robustness to deviations of normality. An advantage 

of this method is that it does not assume that the data is normally distributed, which is often the 

case with empirical data. That is, empirical data is typically not normally distributed, even 

though many data analysis techniques assume that it is.  
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2.3.3. Assess collinearity 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, which also contains a number of menu options that allow you to view and save 

more detailed results. One of these menu options is the “View latent variable coefficients”, 

which shows the results in the table in Figure 2.3.3. The last row of the table in the figure shows 

the full collinearity VIFs for all latent variables in the model. 
 

Figure 2.3.3. Assess collinearity 

 

 
 

    Full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 

model. A more relaxed threshold would be 5. This means that all of the latent variables in the 

model measure different things, which is an important precondition for a valid analysis. Full 

collinearity VIFs of 10 or higher suggest the existence of multicollinearity in the model. 

Multicollinearity at this level, with full collinearity VIFs of 10 or higher, tends to distort 

coefficients of association, such as path coefficients. 

    As we can see, the highest full collinearity VIF in the model is 2.376, well below the 

conservative threshold of 3.3, which allows us to conclude that all of the latent variables in the 

model measure different things. That is, the latent variables in the model measure constructs that 

appear to be conceptually different from one another.  
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2.3.4. Assess validity and reliability 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, which also contains a number of menu options that allow you to view and save 

more detailed results. If one wants to assess the quality of a measurement instrument where the 

indicators reflectively measure their corresponding latent variables, like a typical questionnaire, 

one will usually want to assess convergent validity, discriminant validity, and reliability. The 

menu options, shown in Figure 2.3.4, that are normally used for those assessments are: “View 

indicator loadings and cross-loadings”, “View latent variable coefficients”, and “View 

correlations among latent variables and errors”. 
 

Figure 2.3.4. Assess collinearity 

 

 
 

    A reflective latent variable is one in which all of the indicators are expected to be highly 

correlated with the latent variable, and also highly correlated with one another. For example, the 

answers to certain question-statements by a group of people, measured on a 1 to 7 scale 

(1=strongly disagree; 7 strongly agree) and answered after a meal, are expected to be highly 

correlated with the latent variable “satisfaction with a meal”. The question-statements are: “I am 

satisfied with this meal”, and “After this meal, I feel full”. Therefore, the latent variable 

“satisfaction with a meal”, can be said to be reflectively measured through these indicators. 

    A formative latent variable is one in which the indicators are expected to measure certain 

attributes of the latent variable, but the indicators are not expected to be highly correlated with 
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the latent variable, because they (i.e., the indicators) are not expected to be correlated with one 

another. For example, let us assume that the latent variable “Satisf” (“satisfaction with a meal”) 

is measured using the two following question-statements: “I am satisfied with the main course” 

and “I am satisfied with the dessert”. Both main course and dessert make up the meal (i.e., they 

are part of the same meal) but their satisfaction indicators are not expected to be highly 

correlated with each other. Some people may like the main course, and not like the dessert, or 

vice-versa. 

    The assessment of convergent validity, discriminant validity, and reliability, as discussed 

here, applies to reflective measurement of latent variables. 

    Convergent validity is a measure of the quality of a measurement instrument; the instrument 

itself is typically a set of question-statements (i.e., a questionnaire). A measurement instrument 

has good convergent validity if the question-statements (or other measures) associated with each 

latent variable are understood by the respondents in the same way as they were intended by the 

designers of the question-statements. 

    Discriminant validity is also a measure of the quality of a measurement instrument. A 

measurement instrument has good discriminant validity if the question-statements (or other 

measures) associated with each latent variable are not confused by the respondents, in terms of 

their meaning, with the question-statements associated with other latent variables. 

    Reliability is yet another measure of the quality of a measurement instrument; the instrument 

itself is typically a set of question-statements. A measurement instrument has good reliability if 

the question-statements (or other measures) associated with each latent variable are understood 

in the same way by different respondents.  
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2.3.4.1. Convergent validity 

    The “View indicator loadings and cross-loadings” menu options allow users to view various 

variations of loadings and cross-loadings: combined loadings and cross-loadings, normalized 

combined loadings and cross-loadings, pattern loadings and cross-loadings, normalized pattern 

loadings and cross-loadings, structure loadings and cross-loadings, and normalized structure 

loadings and cross-loadings. The option with combined loadings and cross-loadings is typically 

the one used for convergent validity assessment (see Figure 2.3.4.1). 
 

Figure 2.3.4.1. Combined loadings and cross-loadings 

 

 
 

    A measurement instrument has good convergent validity if the question-statements (or other 

measures) associated with each latent variable are understood by the respondents in the same 

way as they were intended by the designers of the question-statements. In this respect, two 

criteria are recommended as the basis for concluding that a measurement model has acceptable 

convergent validity: that the P values associated with the loadings be equal to or lower than 

0.05; and that the loadings be equal to or greater than 0.5. The loadings associated with each 

latent variable are shown within parentheses. 

    As we can see, all of the loadings are equal to or greater than 0.5. In fact, they are well above 

this threshold; the lowest loading in the whole table is 0.737. The loading shown as 1.000 is for a 

latent variable that is measured through a single indicator; loadings of 1.000 are always shown in 

these cases, by convention, and do not mean anything (only loadings for latent variables with 

multiple indicators have meaning in this context). Also, we can see that the P values associated 

with the loadings are all equal to or lower than 0.05. In fact, they are all lower than 0.001. 

Therefore, we can say that our measurement instrument has good convergent validity.  
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2.3.4.2. Discriminant validity 

    The “View correlations among latent variables and errors” menu options allow users to 

view tables containing correlations among latent variables, the P values associated with those 

correlations, square roots of average variances extracted (AVEs), correlations among latent 

variable error terms (or residuals), and the VIFs associated with latent variable error terms. The 

table containing correlations among latent variables and square roots of AVEs is typically the 

one used for discriminant validity assessment (see Figure 2.3.4.2). 
 

Figure 2.3.4.2. Correlations among latent variables with square roots of AVEs 

 

 
 

    A measurement instrument has good discriminant validity if the question-statements (or other 

measures) associated with each latent variable are not confused by the respondents answering the 

questionnaire with the question-statements associated with other latent variables, particularly in 

terms of the meaning of the question-statements. The following criterion is recommended for 

discriminant validity assessment: for each latent variable, the square root of the AVE should 

be higher than any of the correlations involving that latent variable. That is, the values on 

the diagonal of the table containing correlations among latent variables, which are the square 

roots of the AVEs for each latent variable, should be higher than any of the values above or 

below them, in the same column. 

    As we can see, for all latent variables, the square roots of the AVEs are higher than any of the 

correlations involving those latent variables. The highest correlation among latent variables in 

the table is 0.631, between JS and JP, and the corresponding square roots of the AVEs for JS and 

JP are respectively 0.822 and 1.000. When a latent variable is measured through a single 

indicator, the square root of its AVE is always shown as 1.000. In any event, since the 

recommended criterion was met, we can say that our measurement instrument has good 

discriminant validity.  
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2.3.4.3. Reliability 

    The “View latent variable coefficients” menu option allow users to view several estimates 

that are provided for each latent variable. Among these are coefficients that can be used to assess 

a measurement instrument’s reliability. These are the composite reliability and Cronbach’s alpha 

coefficients, shown on the last two rows of the table in Figure 2.3.4.3. 
 

Figure 2.3.4.3. Reliability coefficients 

 

 
 

    A measurement instrument has good reliability if the question-statements (or other measures) 

associated with each latent variable are understood in the same way by different respondents. 

The following criterion is suggested in the assessment of the reliability of a measurement 

instrument: either the composite reliability or the Cronbach’s alpha coefficient should be 

equal to or greater than 0.6. 

        As we can see, for all latent variables, either the composite reliability or the Cronbach’s 

alpha coefficient is equal to or greater than 0.6. In fact, in this case all of the composite reliability 

and Cronbach’s alpha coefficients are greater than 0.6. The lowest such coefficient in the table is 

0.685, which is the Cronbach’s alpha coefficient for OC. Therefore, since the recommended 

criterion was met, we can say that our measurement instrument has good reliability.  
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2.3.5. Inspect path coefficients 

    As soon as the SEM analysis is completed, the software shows some of the main results in 

graphical format on a window. This graphical representation is shown in Figure 2.3.5. The graph 

with the results shows path coefficients, respective P values, and R-squared coefficients. Users 

can also show or hide indicators weights, loadings and names. 
 

Figure 2.3.5. Inspect path coefficients 

 

 
 

    The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often 

used to refer to path coefficients in SEM analyses; this term is commonly used in multiple 

regression analyses as well. The P values are displayed below the path coefficients, within 

parentheses. The R-squared coefficients are shown below each endogenous latent variable (i.e., a 

latent variable that is hypothesized to be affected by one or more other latent variables), and 

reflect the percentage of the variance in the latent variable that is explained by the latent 

variables that are hypothesized to affect it. 

    Path coefficients associated with P values equal to or lower than 0.05 are deemed to refer to 

real effects, as opposed to effects that are to be interpreted as “zero”. In this sense, all of the path 

coefficients in this model refer to effects that appear to be real, except for the link EM > JP. The 

strongest path coefficients are for the links EM > JS and JS > JP. That is, the higher is the use of 

empathetic management, the higher is job satisfaction. And, the higher is job satisfaction, the 

higher is job performance. The strength of a path coefficient depends on its absolute value; i.e., 
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the sign is disregarded. In our case this is not particularly relevant, because all path coefficients 

are positive.  
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2.3.6. Inspect graphs 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, where the menu option “View/plot linear and nonlinear relationships among 

latent variables” becomes available. Two of the graphs that are particularly useful in this 

analysis are available, under this option, from the options “View focused multivariate 

relationship graph with segments (unstandardized scales)” and “View focused bivariate 

relationship graph with segments (unstandardized scales)”. These are shown in Figure 2.3.6, 

respectively at the top and bottom, both for the link EM > JP. 
 

Figure 2.3.6. Inspect graphs 

 

 

 
 

    Multivariate and bivariate relationship graphs usually differ only when two or more 

predictor latent variables point at one criterion latent variable in a latent variable block. The 

addition of predictors will normally reduce the path coefficients in a latent variable block. 
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Because of this, typically a multivariate relationship graph will have a lower overall 

inclination (or steepness) than its corresponding bivariate relationship graph. 

    The multivariate unstandardized regression coefficient for the link EM > JP is 0.06. The 

meaning of this is that, for each increase of 1 point in the variable EM (empathetic management, 

as perceived by employees on 1-7 scales via 3 question-statements), there is a corresponding 

increase of 0.06 points in the variable JP (job performance, as perceived by employees' 

supervisors on a 1-7 scale via 1 question from their annual evaluations). 

    The tiny increase above factors out the mediating effects via JS (job satisfaction), JI (job 

innovativeness), and OC (organizational commitment). The total effect, however, does not. This 

effect is given by the bivariate unstandardized regression coefficient for the link EM > JP, which 

is a much higher 0.41. For each increase of 1 point in the variable EM (empathetic management), 

there is a corresponding increase of 0.41 points in the variable JP (job performance).  
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2.3.7. Provide advice 

    One of the goals of the analysis was to answer two questions: Is the effect of empathetic 

management on job performance mediated? If yes, is the mediation full or partial? The 

inspection of path coefficients suggests that the effect of empathetic management on job 

performance is indeed mediated by intermediate effects on JS (job satisfaction), JI (job 

innovativeness), and OC (organizational commitment). Given that the path coefficient for the 

link EM > JP was found to be statistically nonsignificant, when the mediating variables (JS, JI 

and OC) were controlled for, we can conclude that the mediation is full. 

    That is, we can conclude that the model is complete, and that no other “hidden” mediating 

variables were missed. This conclusion validates the decision by the insurance company to train 

the managers of a 250-employee unit on the use of empathetic management techniques, and 

supports the expansion of this training. The conclusion is an endorsement of the insurance 

company’s management; not only were they apparently right about the effect of empathetic 

management on job performance, they were also correct about the mechanisms by which this 

effect worked – via mediation by precisely three variables (JS, JI and OC). 

    The analysis also provides support for the interest of the large insurance company in ways to 

improve the performance of its employees by employing management techniques that emphasize 

the development of positive emotions in employees, as opposed to fear of termination. The 

analysis suggests that this class of techniques, if broadly employed in the company, could make 

the insurance company a “best place to work”, with other related advantages: attract labor talent, 

and generate positive publicity for the company. All of these would likely make the company 

more competitive, which would ultimately lead to relative gains in sales and profits compared 

with other companies in the same industry.  



Model-Driven Data Analytics: Applications with WarpPLS 

 50 

 

2.4. Improving software development by employing older 
coders 

    Exhibit 2.4 displays the scenario, questions, and variables related to the sample dataset used to 

illustrate how MDDA can be used to address the need of a large software developer to 

understand the impact of stress on software development performance, and the role of age in this 

area, with the end goal of reducing the number of bugs in software modules. 
 

Exhibit 2.3. Scenario, question, and variables 

 

 

Scenario  

    - A large software developer wants to reduce the number of bugs in software modules. 

    - Some software modules must be developed faster than others (due to deadlines), which is a source of stress. 

    - The software developer decides to study the moderating effect that age has on the impact of stress on number of 

bugs. 

 

Questions 

    - Does stress have an impact on the number of software bugs? 

    - If yes to the above, does age moderate the impact of stress on the number of bugs? 

 

Variables 

    Strs: Stress of the software developer, measured as blood cortisol concentration in micrograms per decilitre 

(mcg/dL).  

    Age: Age of the software developer, measured in years. 

    Bugs: Number of bugs per 1,000 lines of code written by the software developer. 

 

 

    Here the MDDA analysis is aimed at finding out if stress has an impact on the number of 

software bugs, and, if yes, whether age moderates this relationship – i.e., moderates the impact of 

stress on the number of bugs. The variables used in this analysis are Strs (stress of the software 

developer, measured as blood cortisol concentration in micrograms per decilitre – mcg/dL), Age 

(age of the software developer, measured in years), and Bugs (number of bugs per 1,000 lines of 

code written by the software developer. 

    The importance of this analysis comes from the interest of the large software developer in 

ways to improve software development performance, particularly under stress (due to deadlines). 

Some anecdotal evidence in the company suggested that older software developers tend to 

perform well under stress, an effect that the company wants to assess and quantify. If this effect 

is indeed real, the company may start hiring more older software developers, which would go 

counter the industry trend of hiring mostly younger employees – a trend that generally violates 

age discrimination laws.  
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2.4.1. Create the model 

    Figure 2.4.1 shows the model that was built to serve as the basis for our analysis. It contains 

one predictor latent variable, namely Strs (stress of the software developer); one moderating 

latent variable, namely Age (age of the software developer); and one criterion latent variable, 

namely Bugs (number of bugs per 1,000 lines of code). The latent variables have only one 

indicator each, which essentially means that they are assumed to be measured through their 

single indicators without error. 
 

Figure 2.4.1. Create the model 

 

 
 

    The assumption that a latent variable is measured without error may not be entirely correct, 

and frequently may be made for convenience. Whenever possible, multiple indicators should be 

used, because that enables SEM to minimize the effect of measurement error on the parameters 

being estimated (e.g., path coefficients). If that is not possible, data analysts have to do the best 

that they can with what they have available, recognizing the limitations of what they are doing. 

In this particular analysis, no perception-based variables were used, which mitigates the problem 

possibly caused by using only one indicator per latent variable. 

    As you can see, the latent variables have the same names as their indicators. This is not a 

requirement. The names could have been different. In fact, they will typically be different for 

latent variables that are measured through multiple indicators. They will also be different if the 

indicators’ names are longer than 8 characters, which is the maximum allowed for latent 

variables names. This limitation is to give model graphs a cleaner look. 

    Note that there is no direct Age > Bugs link in the model, which means that the analysis 

assumes that the variable Age influences Bugs only indirectly, as a moderator of the direct link 

Strs > Bugs. This is a valid assumption, which could be also tested via the creation of a direct 

Age > Bugs link, which would be in addition to the moderating link Age > (Strs > Bugs). 

However, the anecdotal data does not support the Age > Bugs link, which is why it was not 

explicitly included. If this directly link was included, it would compete with the moderating link 

for the explained variance in the variable Bugs, and this could artificially suppress that link to the 

point of making it appear to be nonexistent. This illustrates the importance of applied theories in 

analysis.  
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2.4.2. Choose general settings 

    The options shown in Figure 2.4.2 were the ones chosen for this analysis. They are common in 

analyses that employ latent variables that are all measured through single indicators, as is the 

case in our model. The options can be selected through the “View or change general settings” 

menu option. 
 

Figure 2.4.2. Choose general settings 

 

 
 

    The Robust Path Analysis outer model analysis algorithm is a simplified algorithm with very 

good computational efficiency. The Linear default inner model analysis algorithm does not 

perform any warping of relationships; that is, it does not model the relationships as nonlinear. 

This helps with the interpretation of the results. The Stable3 method is the default resampling 

method of the software, because of its high accuracy and robustness to deviations of normality. 

An advantage of this method is that it does not assume that the data is normally distributed, 

which is often the case with empirical data. That is, empirical data is typically not normally 

distributed, even though many data analysis techniques assume that it is.  
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2.4.3. Assess collinearity 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, which also contains a number of menu options that allow you to view and save 

more detailed results. One of these menu options is the “View latent variable coefficients”, 

which shows the results in the table in Figure 2.4.3. The last row of the table in the figure shows 

the full collinearity VIFs for all latent variables in the model. 
 

Figure 2.4.3. Assess collinearity 

 

 
 

    Full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 

model. A more relaxed threshold would be 5. This means that all of the latent variables in the 

model measure different things, which is an important precondition for a valid analysis. Full 

collinearity VIFs of 10 or higher suggest the existence of multicollinearity in the model. 

Multicollinearity at this level, with full collinearity VIFs of 10 or higher, tends to distort 

coefficients of association, such as path coefficients. 

    As we can see, the highest full collinearity VIF in the model is 1.855, well below the 

conservative threshold of 3.3, which allows us to conclude that all of the latent variables in the 

model measure different things. That is, the latent variables in the model measure constructs that 

appear to be conceptually different from one another. 

    Note that the full collinearity VIF for the moderating effect, noted as the product (interaction) 

variable Age*Strs, is also included in this collinearity assessment. This is done because we want 

to ensure that the product variable (i.e., Age*Strs) also measures something that is conceptually 

different from the other variables.  
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2.4.4. Inspect path coefficients 

    As soon as the SEM analysis is completed, the software shows some of the main results in 

graphical format on a window. This graphical representation is shown in Figure 2.4.4. The graph 

with the results shows path coefficients, respective P values, and R-squared coefficients. Users 

can also show or hide indicators weights, loadings and names. 
 

Figure 2.4.4. Inspect path coefficients 

 

 
 

    The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often 

used to refer to path coefficients in SEM analyses; this term is commonly used in multiple 

regression analyses as well. The P values are displayed below the path coefficients, within 

parentheses. The R-squared coefficients are shown below each endogenous latent variable (i.e., a 

latent variable that is hypothesized to be affected by one or more other latent variables), and 

reflect the percentage of the variance in the latent variable that is explained by the latent 

variables that are hypothesized to affect it. 

    Path coefficients associated with P values equal to or lower than 0.05 are deemed to refer to 

real effects, as opposed to effects that are to be interpreted as “zero”. In this sense, all of the path 

coefficients in this model refer to effects that appear to be real. The strength of a path coefficient 

depends on its absolute value; i.e., the sign is disregarded. 

    The strongest path coefficient is for the moderating link Age > (Strs > Bugs), and this 

coefficient is negative; the higher is the age of the software developer, the weaker is the positive 

association between the developer’s stress and the number of bugs in the software. The other 

path coefficient is for the direct link Strs > Bugs, and this coefficient is positive; the higher the 

developer’s stress, the higher is number of bugs in the software.  
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2.4.5. Inspect graphs 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, where the menu option menu option “View/plot linear and nonlinear 

relationships among latent variables” becomes available. Two of the graphs that are 

particularly useful in analyses like this are available, under this option, from the options “View 

rocky 3D graph for moderating effect (unstandardized scales)” and “View focused graph 

with low-high values of moderating variable (unstandardized scales)”. These graph 

representations are respectively shown at the top and bottom of Figure 2.4.5; for the moderating 

link Age > (Strs > Bugs). 
 

Figure 2.4.5. Inspect graphs 

 

 

 
 



Model-Driven Data Analytics: Applications with WarpPLS 

 56 

    Unlike graphs for direct links, graphs for moderating links show how the strength of a direct 

link (Strs > Bugs) varies as the moderating link variable (Age) goes from low to high. strength of 

a direct link is reflected in its inclination, whether it is positive or negative. The top graph is a 3D 

graph that shows that, as age goes from 18 to 58, the inclination, of the (Strs > Bugs) relationship 

goes from steep (right part of the graph) to almost flat (left part of the graph). The bottom graph 

is a 2D graph that shows the same, but now with the sample split into “Low Age” and “High 

Age”. 

    So, clearly Age has a significant moderating effect on the (Strs > Bugs) relationship. But, at 

this point the reader may be wondering whether Age is directly associated with Bugs. We can 

check that by inspecting the table containing correlations among latent variables and square roots 

of AVEs, which is available under the “View correlations among latent variables and errors” 

menu option. In our case, the correlation between the variables Age and Bugs is a very small 

0.041, which is not statistically significant. This allows us to conclude the Age has no influence 

on Bugs, even though it strongly influences the (Strs > Bugs) relationship.  
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2.4.6. Provide advice 

    One of the goals of the analysis was to answer two questions: Does stress have an impact on 

the number of software bugs? If yes to the above, does age moderate the impact of stress on the 

number of bugs? The inspection of path coefficients suggests that stress does have an impact on 

the number of software bugs, and that age does indeed moderate the impact of stress on the 

number of bugs. Moreover, the inspection of correlations among latent variables suggests that 

age is not directly associated with the number of bugs, even though it is indirectly related as a 

moderator. 

    The analysis also provides support for the belief, earlier based on anecdotal evidence from the 

large software developer, that older software developers tend to perform well under stress, an 

effect that our analysis helped assess and quantify. This provides the basis for the 

recommendation that the company may start hiring more older software developers, which 

would go counter the industry trend of hiring mostly younger employees. Since this trend 

generally violates age discrimination laws, following the recommendation could make the 

company a “best place to work” that is also in compliance with the law, with other related 

advantages: it would potentially attract labor talent that was not being utilized due to a 

stereotype, and generate positive publicity for the company. All of these would likely make the 

company more competitive, which would ultimately lead to relative gains in sales and profits 

compared with other companies in the same industry.  
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2.5. Deciding on a mall location to establish a hot dog kiosk 

    Exhibit 2.5 displays the scenario, question, and variables related to the sample dataset used to 

illustrate how MDDA can be used to address the need of a new vegan hot dog producer to 

establish a kiosk in one of two malls, in the north or in the south part of a city, with the goal of 

maximizing sales and profits. 
 

Exhibit 2.5. Scenario, question, and variables 

 

 

Scenario  

    - A new vegan hot dog producer wants to establish a kiosk in one of two malls, in the north or in the south part of 

a city. 

    - To test the market the producer provides free samples in both malls, and asks customers how much they would 

be willing to pay for the hot dog. 

 

Questions 

    - In which mall, north or south, should the kiosk be established?  

    - At what price should the hot dog be sold? 

 

Variables 

    MallN1S0: Location of data collection: 1=North Mall, 0=South Mall. 

    Paymt: Amount customer is willing to pay for vegan hot dog, measured in dollars. 

 

 

    Here the MDDA analysis is aimed at finding out the best mall, north or south, where the vegan 

hot dog kiosk should be established; and at what price the hot dog should be sold. The variables 

used in this analysis are MallN1S0 (the location of data collection: 1=North Mall, 0=South Mall) 

and Paymt (the amount a customer is willing to pay for the vegan hot dog, measured in dollars). 

    The importance of this analysis comes from the need of the vegan hot dog producer to 

establish a kiosk in one of two malls, in the north or in the south part of a city, but not in both 

malls (at least not right away). The expectation of the vegan hot dog producer is that choosing 

the right mall will maximize the sales and profits that they can get in the city. This is particularly 

important because, as a new company, they have limited resources; and, therefore, cannot afford 

costly mistakes early on in their business cycle.  
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2.5.1. Create the model 

    Figure 2.5.1 shows the model that was built to serve as the basis for our analysis. It contains 

one predictor latent variable, MallN1S0 (location of data collection: 1=North Mall, 0=South 

Mall); and one criterion latent variable, namely Paymt (amount a customer is willing to pay for 

the vegan hot dog, measured in dollars). The latent variables have only one indicator each, which 

essentially means that they are assumed to be measured through their single indicators without 

error. 
 

Figure 2.5.1. Create the model 

 

 
 

    The assumption that a latent variable is measured without error may not be entirely correct, 

and frequently may be made for convenience. Whenever possible, multiple indicators should be 

used, because that enables SEM to minimize the effect of measurement error on the parameters 

being estimated (e.g., path coefficients). If that is not possible, data analysts have to do the best 

that they can with what they have available, recognizing the limitations of what they are doing. 

In this particular analysis, no perception-based variables were used, which mitigates the problem 

possibly caused by using only one indicator per latent variable. 

    As you can see, the latent variables have the same names as their indicators. This is not a 

requirement. The names could have been different. In fact, they will typically be different for 

latent variables that are measured through multiple indicators. They will also be different if the 

indicators’ names are longer than 8 characters, which is the maximum allowed for latent 

variables names. This limitation is to give model graphs a cleaner look.  
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2.5.2. Choose general settings 

    The options shown in Figure 2.5.2 were the ones chosen for this analysis. They are common in 

analyses that employ latent variables that are all measured through single indicators, as is the 

case in our model. The options can be selected through the “View or change general settings” 

menu option. 
 

Figure 2.5.2. Choose general settings 

 

 
 

    The Robust Path Analysis outer model analysis algorithm is a simplified algorithm with very 

good computational efficiency. The Linear default inner model analysis algorithm does not 

perform any warping of relationships; that is, it does not model the relationships as nonlinear. 

This helps with the interpretation of the results. The Stable3 method is the default resampling 

method of the software, because of its high accuracy and robustness to deviations of normality. 

An advantage of this method is that it does not assume that the data is normally distributed, 

which is often the case with empirical data. That is, empirical data is typically not normally 

distributed, even though many data analysis techniques assume that it is.  
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2.5.3. Assess collinearity 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, which also contains a number of menu options that allow you to view and save 

more detailed results. One of these menu options is the “View latent variable coefficients”, 

which shows the results in the table in Figure 2.5.3. The last row of the table in the figure shows 

the full collinearity VIFs for all latent variables in the model. 
 

Figure 2.5.3. Assess collinearity 

 

 
 

    Full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 

model. A more relaxed threshold would be 5. This means that all of the latent variables in the 

model measure different things, which is an important precondition for a valid analysis. Full 

collinearity VIFs of 10 or higher suggest the existence of multicollinearity in the model. 

Multicollinearity at this level, with full collinearity VIFs of 10 or higher, tends to distort 

coefficients of association, such as path coefficients. 

    As we can see, the highest full collinearity VIF in the model is 1.545, well below the 

conservative threshold of 3.3, which allows us to conclude that all of the latent variables in the 

model measure different things. That is, the latent variables in the model measure constructs that 

appear to be conceptually different from one another. 

    Note that the full collinearity VIFs are identical in this case, because the model has only two 

variables. This is due to the way in which full collinearity VIFs are calculated, namely as a 

function of the variance explained in each variable by all of the other variables in the model. In a 

model with only two variables, that variance explained will be the same for both variables.  
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2.5.4. Inspect path coefficients 

    As soon as the SEM analysis is completed, the software shows some of the main results in 

graphical format on a window. This graphical representation is shown in Figure 2.5.4. The graph 

with the results shows path coefficients, respective P values, and R-squared coefficients. Users 

can also show or hide indicators weights, loadings and names. 
 

Figure 2.5.4. Inspect path coefficients 

 

 
 

    The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often 

used to refer to path coefficients in SEM analyses; this term is commonly used in multiple 

regression analyses as well. The P values are displayed below the path coefficients, within 

parentheses. The R-squared coefficients are shown below each endogenous latent variable (i.e., a 

latent variable that is hypothesized to be affected by one or more other latent variables), and 

reflect the percentage of the variance in the latent variable that is explained by the latent 

variables that are hypothesized to affect it. 

    Path coefficients associated with P values equal to or lower than 0.05 are deemed to refer to 

real effects, as opposed to effects that are to be interpreted as “zero”. In this sense, all of the path 

coefficients in this model refer to effects that appear to be real. The strength of a path coefficient 

depends on its absolute value; i.e., the sign is disregarded. 

    The path coefficient for the only link in the model, namely the link MallN1S0 > Paymt, is 

fairly strong, statistically significant, and positive. As we know, the variable MallN1S0 was 

dummy coded as: 1=North Mall, 0=South Mall. This means that the positive coefficient is 

interpreted as the north mall being associated with higher values of Paymt than the south mall. 

Stated differently, customers are willing to pay significantly more for the vegan hot dog in the 

north mall than in the south mall.  
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2.5.5. Inspect graphs 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 

on a window, where the menu option menu option “View/plot linear and nonlinear 

relationships among latent variables” becomes available. Two of the graphs that are 

particularly useful are available, under this option, from the options “View focused multivariate 

relationship graph with segments (unstandardized scales)” and “View multivariate 

relationship graphs with data points and legends (unstandardized scales)”. These graph 

representations are respectively shown at the top and bottom of Figure 2.5.5; for the link 

MallN1S0 > Paymt. 
 

Figure 2.5.5. Inspect graphs 

 

 

 
 

    Unlike a path coefficient, which is standardized, the graph at the top shows the corresponding 

unstandardized regression coefficient. This type of coefficient tends to be more telling to 

stakeholders. In this case, the unstandardized regression coefficient for the link MallN1S0 > 
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Paymt is 3.52. The meaning of this is that, for each increase of 1 point in the variable MallN1S0 

(location of data collection: 1=North Mall, 0=South Mall), there is a corresponding increase of 

3.52 points in the variable Paymt (amount a customer is willing to pay for the vegan hot dog, 

measured in dollars). In order words, customers are willing to pay 3.52 dollars more, on average, 

for the vegan hot dog in the north mall than in the south mall. 

    The graph at the bottom illustrates the different distribution of answers for the North and 

South malls, and also uses unstandardized scales. Note that it provides the means and standard 

deviations for both variables, next to the corresponding axes. The mean for Paymt is listed as 

6.52 dollars. This graph employs a data label variable, selected with the “Settings” option 

available from the graph menu options. 

    Data labels are text identifiers that are entered by you separately, through one of the 

“Modify” menu options. Like the original numeric dataset, the data labels are stored in a table. 

Each column of this table refers to one data label, and each row to the corresponding row of the 

original numeric dataset. Data labels can be shown on graphs, either next to each data point that 

they refer to, or as part of a graph’s legend (as done here). 

    The “Modify” menu options allow you to add new data labels to your dataset. Data labels can 

be read from the clipboard or from a file, but only one column of labels can be read at a time. 

Data label cells cannot be empty, contain spaces, or contain only numbers; they must be 

combinations of letters, or of letters and numbers. Valid examples are the following: 

“Age>17”, “Y2001”, “AFR”, and “HighSuccess”. These would normally be entered without the 

quotation marks, which are used here only for clarity. Some invalid examples: “123”, “Age > 

17”, and “Y 2001”.  
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2.5.6. Provide advice 

    One of the goals of the analysis was to answer two questions: In which mall, north or south, 

should the kiosk be established? At what price should the hot dog be sold? The inspection of 

path coefficients suggests that customers are willing to pay more for the vegan hot dog in the 

north mall than in the south mall, so the answer to the first question is that the kiosk should be in 

the north mall. The inspection of graphs suggests that the mean for the Paymt variable is 6.52 

dollars. Arguably a good answer to the second question is 6.52 dollars, because this is the mean 

for both malls and thus a competitive price for the north mall. 

    The expectation of the vegan hot dog producer is that choosing the right mall will maximize 

the sales and profits that they can get in the city. If demand is high for the hot dogs at the 6.52 

dollars price, it would make sense to incrementally increase that price until demand starts going 

down, even if input costs (for the hot dog production) are stable. In this scenario, profits margins 

will gradually increase, allowing the vegan hot dog producer to expand, with additional kiosks in 

the north mall – and even possibly the south mall.  
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2.6. Organizing grocery store items to increase sales 

    Exhibit 2.6 displays the scenario, question, and variables related to the sample dataset used to 

illustrate how MDDA can be used to address the need of a small grocery store to organize 

several of the items it sells by placing the items that are purchased together near one another, 

with the goal of maximizing sales and profits. 
 

Exhibit 2.5. Scenario, question, and variables 

 

 

Scenario  

    - A small grocery store carries a number of items, groups of which tend to be purchased together. 

    - Organizing the grocery store by placing items that are purchased together near one another is believed to 

increase sales. 

    - A decision was made to compile data on purchases of items over a period of time. 

    - Data on 550 purchases was compiled. 

 

Question 

    - How should the items be organized in the grocery store? 

 

Variables 

    Milk: Milk purchase, in dollars. 

    Cheese: Cheese purchase, in dollars. 

    Eggs: Eggs purchase, in dollars. 

    Sardine: Canned sardine purchase, in dollars. 

    Tuna: Canned tuna purchase, in dollars. 

    Chicken: Canned chicken purchase, in dollars. 

    Chips: Bagged chips purchase, in dollars. 

    Candy: Candy purchase, in dollars. 

    Soda: Soda purchase, in dollars. 

    Pear: Pear purchase, in dollars. 

    Banana: Banana purchase, in dollars. 

    Apple: Apple purchase, in dollars. 

    Plate: Plastic plate purchase, in dollars. 

    Spoon: Plastic spoon purchase, in dollars. 

    Knife: Plastic knife purchase, in dollars. 

 

 

    Here the MDDA analysis is aimed at finding out how the items should be organized in the 

grocery store. The variables used in this analysis, which store data about each purchase made at 

the store, are: Milk (milk purchase, in dollars), Cheese (cheese purchase, in dollars), Eggs (eggs 

purchase, in dollars), Sardine (canned sardine purchase, in dollars), Tuna (canned tuna purchase, 

in dollars), Chicken (canned chicken purchase, in dollars), Chips (bagged chips purchase, in 

dollars), Candy (candy purchase, in dollars), Soda (soda purchase, in dollars), Pear (pear 

purchase, in dollars), Banana (banana purchase, in dollars), Apple (apple purchase, in dollars), 

Plate (plastic plate purchase, in dollars), Spoon (plastic spoon purchase, in dollars), and Knife 

(plastic knife purchase, in dollars). 

    The importance of this analysis comes from the need for the small grocery store to physically 

organized the items that it sells, and whose sales are measured by the variables above, by placing 

the items that are purchased together near one another. This is perceived by the store’s 

management, as likely to increase sales, and thus absolute profits. This belief held by the store’s 

management is based on anecdotal data, namely the observation that customers tend to buy more 
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of items that are usually purchased together (e.g., dairy items) if they are placed near one another 

in the store.  
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2.6.1. Inspect indicator correlations 

    Figure 2.6.1 shows the correlations among several of the indicators that we intend to group 

into latent variables in a model. They are available from the menu option “View or save 

correlations and descriptive statistics for indicators”, which is under the “Data” menu option. 

These correlations among indicators are available prior to the model being created, which is 

necessary for this specific application. 
 

Figure 2.6.1. Create the model 

 

 
 

    What we will do here is to select as indicators or each latent variable those that have 

correlations among themselves that are equal to or greater than 0.5. For example, Milk (milk 

purchase, in dollars), Cheese (cheese purchase, in dollars), and Eggs (eggs purchase, in dollars) 

have the following correlations among themselves: Milk <> Milk (1.000), Milk <> Cheese 

(0.625), and Milk <> Cheese (0.642). Note that the correlation of any variable with itself (Milk 

<> Milk) is 1.000.  
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2.6.2. Create the model 

    Figure 2.6.2 shows the model that was built to serve as the basis for our analysis. It contains 

five latent variables, which were created to aggregate the indicators. The aggregation of 

indicators into latent variables was based on the indicator correlations. As previously noted, 

indicators that were found to have correlations among themselves that were equal to or greater 

than 0.5 were aggregated into the same latent variables. 
 

Figure 2.6.2. Create the model 

 

 
 

    The latent variables created were the following: Dairy (indicators: Milk, Cheese, and Eggs), 

Canned (indicators: Sardine, Tuna, and Chicken), Junk (indicators: Chips, Candy, and Soda), 

Fruits (indicators: Pear, Banana, and Apple), and Utensils (indicators: Plate, Spoon, and Knife). 

In this initial version of our model, the latent variables are not yet placed in any particular order. 

That will be done later, after inspection of the correlations among latent variables.  
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2.6.3. Choose general settings 

    The options shown in Figure 2.6.3 were the ones chosen for this analysis. They are common in 

exploratory analyses that employ one or more latent variables that are measured through multiple 

indicators, as is the case in our model. The options can be selected through the “View or change 

general settings” menu option. 
 

Figure 2.6.3. Choose general settings 

 

 
 

    PLS Regression has been the default outer model algorithm since the software’s inception. 

This algorithm iterates by making the outer model weights directly proportional to the loadings, 

until the weights become stable. This algorithm does not let the inner model influence the outer 

model. The Linear default inner model analysis algorithm does not perform any warping of 

relationships; that is, it does not model the relationships as nonlinear. This helps with the 

interpretation of the results. The Stable3 method is the default resampling method of the 

software, because of its high accuracy and robustness to deviations of normality. An advantage 

of this method is that it does not assume that the data is normally distributed, which is often the 

case with empirical data. That is, empirical data is typically not normally distributed, even 

though many data analysis techniques assume that it is.  
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2.6.4. Inspect latent variable correlations 

    The “View correlations among latent variables and errors” menu options allow users to 

view tables containing correlations among latent variables, the P values associated with those 

correlations, square roots of average variances extracted (AVEs), correlations among latent 

variable error terms (or residuals), and the VIFs associated with latent variable error terms. The 

table containing correlations among latent variables and square roots of AVEs (see Figure 2.6.4) 

is typically the one used here, for this type of application. 
 

Figure 2.6.4. Inspect latent variable correlations 

 

 
 

    What we will do here is to use these correlations to place the latent variables next to one 

another based on their correlations. Here correlation signs matter. If two items are positively 

correlated, then tend to be purchased together; if the correlation is negative, they tend not to be 

purchased together. The most important correlations are the following, selected from each 

column as we move from left to right: Dairy <> Fruits (0.520), Canned <> Utensils (0.372), Junk 

<> Utensils (0.415), Fruits <> Dairy (0.520).  
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2.6.5. Adjust the model 

    In Figure 2.6.5 we show how we placed the latent variables next to one another based on their 

correlations. Again, here correlation signs matter, and the most important correlations are: Dairy 

<> Fruits (0.520), Canned <> Utensils (0.372), Junk <> Utensils (0.415), Fruits <> Dairy 

(0.520). This configuration assumed a particular store configuration. For example, here we 

assumed that the entrance to the store is near “Junk”, where there is a shelving unit with shelves 

on both sides, and that the cash register stand is behind “Dairy” and “Fruits”. 
 

Figure 2.6.5. Adjust the model 

 

 
 

    It is also a good idea to check the loadings of the indicators on the latent variables, which we 

can do by using the show/hide indicators option of the model graph menu. The loadings are 

listed after the “L=” symbol. Ideally the loadings will all be 0.5 or higher. Lower loadings may 

suggest that the corresponding indicators should not have been grouped in the way they were.  
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2.6.6. Add contextual information 

    In Figure 2.6.6 we show how we placed the latent variables next to one another based on their 

correlations, and also show elements that suggest how the store was configured. This makes it 

easier for the main customer of the analysis, the store manager, to visualized how the store will 

look like if it is configured consistently with the results of the analysis. 
 

Figure 2.6.6. Add contextual information 

 

 
 

    For example, the entrance to the store that is near “Junk” is now more clearly indicated. The 

same is true for the shelving unit, with shelves on both sides. Finally, the cash register stand 

location is now more clearly indicated as well, behind “Dairy” and “Fruits”. Ultimately, the 

physical configuration of the items is the main recommendation that comes from the analysis.  



Model-Driven Data Analytics: Applications with WarpPLS 

 74 

 

 

 

 

 

 

 

 

 

 

Part 3: Concluding remarks 
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3.1. Applied model-driven data analytics 

    This document described the technique of MDDA; which involves the creation of a path 

model expressing an applied theory, and testing the model using path analysis with latent 

variables. The latter, path analysis with latent variables, is generally known as SEM. 

    The applications presented in this document showed how MDDA can be employed in a variety 

of different contexts, where typically data is collected from organizations with the goal of 

answering questions that ultimately affect the ability of the organizations to grow their sales and 

profits. 

    The applications followed a similar set of steps. There was repetition across applications, of 

both steps and the text that describes them. This repetition was aimed at helping with the 

internalization by analysts (i.e., learning) of complex concepts and techniques, while at the same 

time making each application section fairly self-contained.   
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3.2. Use of simulated data 

    Some of the data discussed in this document have been compiled based on publicly available 

sources, some have been created via Monte Carlo simulations based on empirical studies, and 

some have been produced as a mix of both approaches. For ethical reasons, and to protect 

individual privacy, all of the individual-level data have been created via Monte Carlo 

simulations, based on empirical studies – to mimic what happened with real data.  
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Glossary 
    This glossary includes terms that go beyond those used in the applications discussed in this 

document. We are including this extended set of terms here because some readers may want to 

go beyond the features discussed in the applications, and explore other more advanced features 

that refer to some of the terms in this extended set. 

    Adjusted R-squared coefficient. A measure equivalent to the R-squared coefficient, with the 

key difference that it corrects for spurious increases in the R-squared coefficient due to 

predictors that add no explanatory value in each latent variable block. Like R-squared 

coefficients, adjusted R-squared coefficients can assume negative values. These are rare 

occurrences that normally suggest problems with the model in which they occur; e.g., severe 

collinearity or model misspecification. 

    Analytic composites. Analytic composites are weighted aggregations of indicators where the 

relative weights are set by the user, usually based on an existing theory. 

    Average variance extracted (AVE). A measure associated with a latent variable, which is 

used in the assessment of the discriminant validity of a measurement instrument. Less 

commonly, it can also be used for convergent validity assessment. 

    Composite reliability coefficient. This is a measure of reliability associated with a latent 

variable. Another name for it is Dillon–Goldstein rho coefficient. Unlike the Cronbach’s alpha 

coefficient, another measure of reliability, the compositive reliability coefficient takes indicator 

loadings into consideration in its calculation. It often is slightly higher than the Cronbach’s alpha 

coefficient. 

    Constrained latent growth. The constrained latent growth method is essentially the same 

method as that employed in a full latent growth analysis with the difference that here it is 

constrained to a sub-sample, typically formed by two groups being compared. This method is 

normally used in multi-group analyses, whereby the dataset is segmented into various groups, all 

possible combinations of pairs of groups are generated, and each pair of groups is compared. 

    Construct. A conceptual entity measured through a latent variable. Sometimes it is referred to 

as “latent construct”. The terms “construct” or “latent construct” are often used interchangeably 

with the term “latent variable”. 

    Convergent validity of a measurement instrument. Convergent validity is a measure of the 

quality of a measurement instrument; the instrument itself is typically a set of question-

statements. A measurement instrument has good convergent validity if the question-statements 

(or other measures) associated with each latent variable are understood by the respondents in the 

same way as they were intended by the designers of the question-statements. 

    Cronbach’s alpha coefficient. This is a measure of reliability associated a latent variable. It 

usually increases with the number of indicators used, and is often slightly lower than the 

composite reliability coefficient, another measure of reliability. 

    Discriminant validity of a measurement instrument. Discriminant validity is a measure of 

the quality of a measurement instrument; the instrument itself is typically a set of question-

statements. A measurement instrument has good discriminant validity if the question-statements 

(or other measures) associated with each latent variable are not confused by the respondents, in 

terms of their meaning, with the question-statements associated with other latent variables. 

    Effect size. The effect size is a measure of the magnitude of an effect that is independent of 

the size of the sample analyzed. The effect sizes are calculated by this software as the absolute 
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values of the individual contributions of the corresponding predictor latent variables to the R-

squared coefficients of the criterion latent variable in each latent variable block. With the effect 

sizes users can ascertain whether the effects indicated by path coefficients are small, medium, or 

large. The values usually recommended are 0.02, 0.15, and 0.35; respectively. Values below 0.02 

suggest effects that are too weak to be considered relevant from a practical point of view, even 

when the corresponding P values are statistically significant; a situation that may occur with 

large sample sizes. 

    Endogeneity. The term “endogeneity” refers to a phenomenon that is characterized by the 

structural error term for an endogenous variable being correlated with any of the variable’s 

predictors. For example, let us consider a simple population model with the following links A > 

B and B > C. This model presents endogeneity with respect to C, because variation flows from A 

to C via B, leading to a biased estimation of the path for the link B > C via ordinary least squares 

regression. Adding a link from A to C could be argued as “solving the problem”, but in fact it 

creates the possibility of a type I error, since the link A > C does not exist at the population level. 

A more desirable solution to this problem is to create an instrumental variable iC, incorporating 

only the variation of A that ends up in C and nothing else, and revise the model so that it has the 

following links: A > B, B > C and iC > C. The link iC > C can be used to test for endogeneity, 

via its P value and effect size. This link (i.e., iC > C) can also be used to control for endogeneity, 

thus removing the bias when the path coefficient for the link B > C is estimated via ordinary least 

squares regression. Endogeneity may also arise from multilevel effects (Kock, 2020b). 

    Endogenous latent variable. This is a latent variable that is hypothesized to be affected by 

one or more other latent variables. An endogenous latent variable has one or more arrows 

pointing at it in the model graph. 

    Exogenous latent variable. This is a latent variable that does not depend on other latent 

variables, from a SEM analysis perspective. An exogenous latent variable does not have any 

arrow pointing at it in the model graph. 

    Factor score. A factor score is the same as a latent variable score; see the latter for a 

definition. 

    Formative latent variable. A formative latent variable is one in which the indicators are 

expected to measure certain attributes of the latent variable, but the indicators are not expected to 

be highly correlated with the latent variable score, because they (i.e., the indicators) are not 

expected to be correlated with one another. For example, let us assume that the latent variable 

“Satisf” (“satisfaction with a meal”) is measured using the two following question-statements: “I 

am satisfied with the main course” and “I am satisfied with the dessert”. Here, the meal 

comprises the main course, say, filet mignon; and a dessert, a fruit salad. Both main course and 

dessert make up the meal (i.e., they are part of the same meal) but their satisfaction indicators are 

not expected to be highly correlated with each other. The reason is that some people may like the 

main course very much, and not like the dessert. Conversely, other people may be vegetarians 

and hate the main course, but may like the dessert very much. 

    Full collinearity VIFs. Variance inflation factors (VIFs) are measures of the degree of 

collinearity (or multicollinearity) among variables, including both indicators and latent variables. 

With latent variables, collinearity can take two main forms: vertical and lateral collinearity. 

Vertical, or classic, collinearity is predictor-predictor latent variable collinearity in individual 

latent variable blocks. Lateral collinearity is a term that refers to predictor-criterion latent 

variable collinearity; a type of collinearity that can lead to particularly misleading results. Full 

collinearity VIFs allow for the simultaneous assessment of both vertical and lateral collinearity 
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in a SEM model. They can also be used for common method bias and discriminant validity 

assessment. 

    Full latent growth. Sometimes the actual inclusion of moderating variables and 

corresponding links in a model leads to problems; e.g., increases in collinearity levels, and the 

emergence of instances of Simpson’s paradox. By using the full latent growth analysis method, 

users can completely avoid these problems. This method allows one to estimate the effects of a 

latent variable or indicator on all of the links in a model (all at once), without actually including 

any links between the variable and other variables in the model (Kock, 2020a). Moreover, 

growth in coefficients associated with links among different latent variables and between a latent 

variable and its indicators, can be estimated; allowing for measurement invariance tests applied 

to loadings and/or weights. Finally, growth coefficients can be used in the assessment of 

moderated mediation effects. 

    Heterotrait-monotrait (HTMT) ratios. These ratios, as well as the updated HTMT2 ratios, 

have been proposed for discriminant validity assessment, particularly in the context of 

composite-based SEM via classic PLS algorithms; as opposed to factor-based SEM via modern 

algorithms that estimate factors (which have been available from this software for quite some 

time now). Discriminant validity is a measure of the quality of a measurement instrument; the 

instrument itself is typically a set of question-statements. A measurement instrument has good 

discriminant validity if the question-statements (or other measures) associated with each latent 

variable are not confused by the respondents, in terms of their meaning, with the question-

statements associated with other latent variables. 

    Indicator. The term indicator is frequently used as synonymous with that of manifest variable; 

a convention that is used here. Thus, see the latter for a definition. More technically though, 

indicators are manifest variables that are actually used in the measurement model as direct 

measures of latent variables. As such, technically speaking, there can be manifest variables that 

are not indicators, if the manifest variables in question are part of the original dataset but not 

included in the measurement model. 

    Inner model. In a SEM analysis, the inner model is the part of the model that describes the 

relationships among the latent variables that make up the model. In this sense, the path 

coefficients are inner model parameter estimates. 

    Instrumental variable. Instrumental variables are variables that selectively share variation 

with other variables, and only with those variables. Instrumental variables can be used to test and 

control for endogeneity, and also to estimate reciprocal relationships. Endogeneity may arise 

from multilevel effects. 

    Latent growth. Generally speaking, latent growth refers to underlying growth in coefficients 

associated with links among different latent variables and between a latent variable and its 

indicators. This underlying growth is often reflected in significant moderating and nonlinear 

effects. 

    Latent variable. A latent variable is a variable that is measured through multiple variables 

called indicators or manifest variables. For example, “satisfaction with a meal” may be a latent 

variable measured through two manifest variables that store the answers on a 1 to 7 scale 

(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with 

this meal”, and “After this meal, I feel full”. 

    Latent variable block. A latent variable block is a group of latent variables in which one or 

more predictor latent variables point at one criterion latent variable. In a PLS-based SEM 

analysis, once latent variable scores are calculated, a series of multiple least squares regressions 
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are conducted to calculate path coefficients. Each multiple least squares regression is performed 

on a latent variable block, until all blocks are covered. The term “latent variable block” is also 

used in the PLS-based SEM literature to refer to a group of manifest variables linked to their 

assigned latent variable; i.e., a latent variable and its indicators. 

    Latent variable score. Latent variable scores are values calculated based on the indicators 

defined by the user as associated with the latent variable. They are calculated using one of the 

outer model analysis algorithms available. These scores may be understood as new columns in 

the data, with the same number of rows as the original data (unless a range-restricted analysis is 

conducted), and which generally tend to maximize the loadings and minimize the cross-loadings 

of a pattern matrix of loadings after an oblique rotation. 

    Latent variable error. An error variable that accounts for the variance in an endogenous 

latent variable that is not accounted for by the latent variable predictors that point at the 

endogenous latent variable. The terms “error” and “residual” are used interchangeably in this 

document. Nevertheless, they refer to subtly different entities. Technically speaking, the term 

“error” typically refers to the error variable in the true population model, which is assumed to be 

uncorrelated with latent variables other than the endogenous latent variable to which it is 

associated. Conversely, the term “residual” typically refers to the corresponding estimated error, 

the difference between the expected value of the latent variable and its point estimate, which in 

practice is often correlated with latent variables other than the endogenous latent variable to 

which it is associated. This is an example of a broader occurrence in multivariate analyses: more 

often than not sample-specific estimates violate assumptions about the theoretical true values, 

even if slightly. 

    Manifest variable. A manifest variable is one of several variables that are used to indirectly 

measure a latent variable. For example, “satisfaction with a meal” may be a latent variable 

measured through two manifest variables, which assume as values the answers on a 1 to 7 scale 

(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with 

this meal”, and “After this meal, I feel full”. 

    Minimum required sample size. The minimum required sample size needed for an SEM test 

to achieve an acceptable level of power (usually .8) depends on the effect size associated with 

the path coefficient under consideration and the significance level used for hypothesis testing 

(normally 0.05). The higher is the magnitude of a path coefficient at the population level, the 

higher is usually its effect size, and the greater is the probability that a true effect will be 

properly detected with a small sample. Therefore strong path coefficients at the population level, 

whether they are negative or positive, tend to require very small sample sizes for their proper 

identification. This software allows users to obtain estimates of the minimum required sample 

sizes for empirical studies based on the following model elements: the minimum absolute 

significant path coefficient in the model (e.g., 0.21), the significance level used for hypothesis 

testing (e.g., 0.05), and the power level required (e.g., 0.80). 

    Outer model. In a SEM analysis, the outer model is the part of the model that describes the 

relationships among the latent variables that make up the model and their indicators. In this 

sense, the weights and loadings are outer model parameter estimates. 

    Portable document format (PDF). This is an open standard file format created by Adobe 

Systems, and widely used for exchanging documents. It is the format used for this software’s 

documentation. 

    Power. Statistical power, often referred to simply as “power”, is a statistical test’s probability 

of avoiding type II errors, or false negatives. Power is often estimated for a particular coefficient 
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of association and sample size, for samples drawn from a population, at a given significance 

level (usually P < .05). For example, let us consider an SEM test employing PLS Mode A and 

bootstrapping. Let us assume that such a test is able to recognize a path coefficient as statistically 

significant, where the path coefficient is associated with a “real” effect at the population level of 

magnitude .2; which would be referred to as the “true” path coefficient. Let us also assume that 

the test correctly recognizes the path coefficient as significant 83 percent of the time when 

samples of size 150 are randomly taken from the population. Under these circumstances, we 

would conclude that the power of the test is 83 percent, or .83. 

    Q-squared coefficient. This measure is also known after its main proponents as the Stone-

Geisser Q-squared coefficient. The Q-squared coefficient is a nonparametric measure 

traditionally calculated via blindfolding. It is used for the assessment of the predictive validity 

(or relevance) associated with each latent variable block in the model, through the endogenous 

latent variable that is the criterion variable in the block. The Q-squared coefficient is sometimes 

referred to as a resampling analog of the R-squared. It is often similar in value to that measure. 

The Q-squared coefficient can assume negative values. 

    Reflective latent variable. A reflective latent variable is one in which all of the indicators are 

expected to be highly correlated with the latent variable score, and also highly correlated with 

one another. For example, the answers to certain question-statements by a group of people, 

measured on a 1 to 7 scale (1=strongly disagree; 7 strongly agree) and answered after a meal, are 

expected to be highly correlated with the latent variable “satisfaction with a meal”. The question-

statements are: “I am satisfied with this meal”, and “After this meal, I feel full”. Therefore, the 

latent variable “satisfaction with a meal”, can be said to be reflectively measured through these 

two indicators. These indicators store answers to the two question-statements. This latent 

variable could be represented in a model graph as “Satisf”, and the indicators as “Satisf1” and 

“Satisf2”. 

    Reliability of a measurement instrument. Reliability is a measure of the quality of a 

measurement instrument; the instrument itself is typically a set of question-statements. A 

measurement instrument has good reliability if the question-statements (or other measures) 

associated with each latent variable are understood in the same way by different respondents. 

    R-squared coefficient. This is a measure calculated only for endogenous latent variables, and 

that reflects the percentage of explained variance for each of those latent variables. The higher 

the R-squared coefficient, the better is the explanatory power of the predictors of the latent 

variable in the model, especially if the number of predictors is small. Contrary to popular belief 

and in spite of what their name implies, R-squared coefficients are not calculated by squaring a 

correlation-like measure. They can assume negative values, although these are rare occurrences 

that normally suggest problems with the model in which they occur; e.g., severe collinearity or 

model misspecification. 

    Statistical power. Statistical power is often referred to simply as “power”; see the latter for a 

definition. 

    Structural equation modeling (SEM). A general term used to refer to a class of multivariate 

statistical methods where complex relationships among latent variables and indicators are 

estimated at once. In a SEM analysis, each latent variable is typically measured through multiple 

indicators, although there may be cases in which only one indicator is used to measure a latent 

variable. Key measures of relationships among latent variables are path coefficients (or 

standardized partial regression coefficients) and corresponding P values. Key measures of 
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relationships among latent variables and their respective indicators are weights and loadings, and 

corresponding P values. 

    Structural error. An error variable that accounts for the variance in an endogenous latent 

variable that is not accounted for by the latent variable predictors that point at the endogenous 

latent variable. A structural error is the same as a latent variable error; see the latter for an 

expanded definition. 

    Variance inflation factor (VIF). This is a measure of the degree of collinearity (or 

multicollinearity) among variables, including both indicators and latent variables. With latent 

variables, collinearity can take two main forms: vertical and lateral collinearity. Vertical, or 

classic, collinearity is predictor-predictor latent variable collinearity in individual latent variable 

blocks. Lateral collinearity is a term that refers to predictor-criterion latent variable collinearity; 

a type of collinearity that can lead to particularly misleading results. Full collinearity VIFs allow 

for the simultaneous assessment of both vertical and lateral collinearity in a SEM model.  
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